TY - JOUR
T1 - Photodebromination of dibromobutane
T2 - Possibility and evidence
AU - Lin, Yun Chiou
AU - Wang, Chong Mou
N1 - Funding Information:
The authors thank the National Science Council, Republic of China, for financial support (NSC 94-2113-M-003-018).
PY - 2007/3/15
Y1 - 2007/3/15
N2 - The reduction of organic dibromides, such as 2,3-dibromobutane (2,3-DBB), 1,2-dibromobutane (1,2-DBB) and 1,2-dibromocyclohexane, appears to exist with cathodic barrier. For instance, 2,3-DBB can only be reduced at a potential more negative than -1.5 V vs. SCE in DMSO with bare carbon electrodes. To reduce the cathodic overvoltage for 2,3-DBB, we found that cobalt tris(5-aminophenanthroline) (Co (5 -NH2 -phen)32 +) is a useful catalyst. Incorporating Co (5 -NH2 -phen)32 + could shift the onset potential for the reduction of 2,3-DBB to -1 V. As Co (5 -NH2 -phen)32 + was further modified with 1-aminopyrene (1-NH2-Py), the resulting derivative, Py-Co (5 - NH2 -phen)32 +, could shift the onset potential to a more positive value, -0.45 V, as the system was irradiated with white light. Using Py-Co (5 - NH2 -phen)32 + and diethylamine (DEA) as the photocatalyst and sacrificial donor, 2,3-DBB could then be photochemically degraded into butene and bromide ions. IR spectral analysis and bromide-ion analysis confirmed these results. Besides 2,3-DBB, 1,2-DBB and 1,2-dibromocyclohexane could also be degraded under the photosensitization of Py-Co (5 - NH2 -phen)32 +. Accordingly, the proposed photodebromination is considered as an effective alternative for the degradation of organic dibromides, and Py-Co (5 - NH2 -phen)32 + is a potential photocatalyst in this aspect.
AB - The reduction of organic dibromides, such as 2,3-dibromobutane (2,3-DBB), 1,2-dibromobutane (1,2-DBB) and 1,2-dibromocyclohexane, appears to exist with cathodic barrier. For instance, 2,3-DBB can only be reduced at a potential more negative than -1.5 V vs. SCE in DMSO with bare carbon electrodes. To reduce the cathodic overvoltage for 2,3-DBB, we found that cobalt tris(5-aminophenanthroline) (Co (5 -NH2 -phen)32 +) is a useful catalyst. Incorporating Co (5 -NH2 -phen)32 + could shift the onset potential for the reduction of 2,3-DBB to -1 V. As Co (5 -NH2 -phen)32 + was further modified with 1-aminopyrene (1-NH2-Py), the resulting derivative, Py-Co (5 - NH2 -phen)32 +, could shift the onset potential to a more positive value, -0.45 V, as the system was irradiated with white light. Using Py-Co (5 - NH2 -phen)32 + and diethylamine (DEA) as the photocatalyst and sacrificial donor, 2,3-DBB could then be photochemically degraded into butene and bromide ions. IR spectral analysis and bromide-ion analysis confirmed these results. Besides 2,3-DBB, 1,2-DBB and 1,2-dibromocyclohexane could also be degraded under the photosensitization of Py-Co (5 - NH2 -phen)32 +. Accordingly, the proposed photodebromination is considered as an effective alternative for the degradation of organic dibromides, and Py-Co (5 - NH2 -phen)32 + is a potential photocatalyst in this aspect.
KW - Cobalt tris(5-aminophenanthroline)
KW - Organic dibromide
KW - Photodebromination
KW - Photosensitization
KW - Pyrene
UR - http://www.scopus.com/inward/record.url?scp=33847335442&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33847335442&partnerID=8YFLogxK
U2 - 10.1016/j.jelechem.2006.11.023
DO - 10.1016/j.jelechem.2006.11.023
M3 - Article
AN - SCOPUS:33847335442
SN - 1572-6657
VL - 601
SP - 237
EP - 241
JO - Journal of Electroanalytical Chemistry
JF - Journal of Electroanalytical Chemistry
IS - 1-2
ER -