Abstract
Organic-inorganic halide perovskite solar cells have attracted considerable attention because of its high efficiency, low-cost fabrication, and flexibility. The film morphology has to be well controlled since the presence of pinholes in the perovskite films deteriorates the performance of the devices. Therefore, a variety of methods have been developed to realize high quality perovskite films and excellent device performance. In this work, hot-casting technique and additive engineering were investigated for obtaining a better film morphology. Optical microscopy, electron scanning microscopy and X-ray diffraction were used to monitor the morphology and the crystallinity of the perovskite films. We found that pinhole-free perovskite films cannot be obtained by the hot-casting technique alone. By using the hot-casting technique and incorporating the additive in the perovskite precursor, perovskite films with minimum pinholes were obtained when optimum hot-casting temperature and the amount of the additive were used. A reproducible average power conversion efficiency of 9.24 % was observed. The findings showed that the perovskite films depend not only on the usage of hot-casting technique but also through the incorporation of additives which can be used for other perovskite materials utilizing as solar cells.
Original language | English |
---|---|
Article number | 116283 |
Journal | Synthetic Metals |
Volume | 260 |
DOIs | |
Publication status | Published - 2020 Feb |
Keywords
- Additives
- Hot-Casting
- Perovskites
- Thermal annealing
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry