Abstract
The T-palindromic quadratic eigenvalue problem (λ2B + λC + A)x = 0, with A,B,C ε Cn×n, CT = C and BT = A, governs the vibration behaviour of trains. Other palindromic eigenvalue problems, quadratic or higher order, arise from applications in surface acoustic wave filters, optimal control of discrete-time systems and crack modelling. Numerical solution of palindromic eigenvalue problems is challenging, with unacceptably low accuracy from the basic linearization approach. In this survey paper, we shall talk about the history of palindromic eigenvalue problems, in terms of their history, applications, numerical solution and generalization. We shall also speculate on some future directions of research.
Original language | English |
---|---|
Pages (from-to) | 743-779 |
Number of pages | 37 |
Journal | Taiwanese Journal of Mathematics |
Volume | 14 |
Issue number | 3 A |
DOIs | |
Publication status | Published - 2010 Jun |
Keywords
- Crack
- Crawford number
- Eigenvalue
- Eigenvector
- Matrix polynomial
- Palindromic eigenvalue problem
- SAW filter
- Train vibration
ASJC Scopus subject areas
- General Mathematics