TY - GEN
T1 - P-type tunneling FET on Si (110) substrate with anisotropic effect
AU - Lee, M. H.
AU - Kao, C. Y.
AU - Yang, C. L.
AU - Lee, C. H.
PY - 2011
Y1 - 2011
N2 - The promising potential of tunneling FETs (TFETs) for steep switch behavior with gate controlled band-to-band tunneling (BTBT) mechanism has attracted much attention for supply voltage (VDD) scaling and power consumption next generation CMOS [1, 2]. However, the challenge for TFETs is lower drive currents as compare with MOSFET due to a high conductance resistance while reverse bias. Tunneling FETs (TFETs) operates with band-to-band tunneling current that change with the channel potential more abruptly than thermionic emission current. In order to obtain high ION without sacrificing IOFF, and the high-k dielectric and metal gate are integrated as gate stack. To obtain high quality and avoid crystallizing of high-K layer, the gate last process was performed in this work. For N-TFET, much works have been reported on the SS improvement [4, 5]. For P-TFET, Bhuwalka et al. reported the ambipolar working of vertical TFET with negative gate bias, which obtain SS < 60mV/dec [6, 7]. In this work, we will demonstrate HK/MG (high-K/metal gate) P-TFET with the gate last process, and discuss the anisotropic effect on (110) substrate.
AB - The promising potential of tunneling FETs (TFETs) for steep switch behavior with gate controlled band-to-band tunneling (BTBT) mechanism has attracted much attention for supply voltage (VDD) scaling and power consumption next generation CMOS [1, 2]. However, the challenge for TFETs is lower drive currents as compare with MOSFET due to a high conductance resistance while reverse bias. Tunneling FETs (TFETs) operates with band-to-band tunneling current that change with the channel potential more abruptly than thermionic emission current. In order to obtain high ION without sacrificing IOFF, and the high-k dielectric and metal gate are integrated as gate stack. To obtain high quality and avoid crystallizing of high-K layer, the gate last process was performed in this work. For N-TFET, much works have been reported on the SS improvement [4, 5]. For P-TFET, Bhuwalka et al. reported the ambipolar working of vertical TFET with negative gate bias, which obtain SS < 60mV/dec [6, 7]. In this work, we will demonstrate HK/MG (high-K/metal gate) P-TFET with the gate last process, and discuss the anisotropic effect on (110) substrate.
UR - http://www.scopus.com/inward/record.url?scp=84880729286&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880729286&partnerID=8YFLogxK
U2 - 10.1109/DRC.2011.5994500
DO - 10.1109/DRC.2011.5994500
M3 - Conference contribution
AN - SCOPUS:84880729286
SN - 9781612842417
T3 - Device Research Conference - Conference Digest, DRC
SP - 207
EP - 208
BT - 69th Device Research Conference, DRC 2011 - Conference Digest
T2 - 69th Device Research Conference, DRC 2011
Y2 - 20 June 2011 through 22 June 2011
ER -