On the reduction of a non-torsion point of a Drinfeld module

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Let ρ be a Drinfeld Fq [T]-module defined over a global function field K. Let z ∈ K be a non-torsion point. We prove that for almost all monic elements n ∈ Fq [T] there exists a place ℘ of K such that n is the "order" of the reduction of z modulo ℘.

Original languageEnglish
Pages (from-to)1458-1484
Number of pages27
JournalJournal of Number Theory
Volume128
Issue number6
DOIs
Publication statusPublished - 2008 Jun 1

Fingerprint

Drinfeld Modules
Monic
Function Fields
Modulo
Module

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

On the reduction of a non-torsion point of a Drinfeld module. / Hsia, Liang-Chung.

In: Journal of Number Theory, Vol. 128, No. 6, 01.06.2008, p. 1458-1484.

Research output: Contribution to journalArticle

@article{b386bb5918074287aa43474c80af253f,
title = "On the reduction of a non-torsion point of a Drinfeld module",
abstract = "Let ρ be a Drinfeld Fq [T]-module defined over a global function field K. Let z ∈ K be a non-torsion point. We prove that for almost all monic elements n ∈ Fq [T] there exists a place ℘ of K such that n is the {"}order{"} of the reduction of z modulo ℘.",
author = "Liang-Chung Hsia",
year = "2008",
month = "6",
day = "1",
doi = "10.1016/j.jnt.2007.12.003",
language = "English",
volume = "128",
pages = "1458--1484",
journal = "Journal of Number Theory",
issn = "0022-314X",
publisher = "Academic Press Inc.",
number = "6",

}

TY - JOUR

T1 - On the reduction of a non-torsion point of a Drinfeld module

AU - Hsia, Liang-Chung

PY - 2008/6/1

Y1 - 2008/6/1

N2 - Let ρ be a Drinfeld Fq [T]-module defined over a global function field K. Let z ∈ K be a non-torsion point. We prove that for almost all monic elements n ∈ Fq [T] there exists a place ℘ of K such that n is the "order" of the reduction of z modulo ℘.

AB - Let ρ be a Drinfeld Fq [T]-module defined over a global function field K. Let z ∈ K be a non-torsion point. We prove that for almost all monic elements n ∈ Fq [T] there exists a place ℘ of K such that n is the "order" of the reduction of z modulo ℘.

UR - http://www.scopus.com/inward/record.url?scp=43049136153&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=43049136153&partnerID=8YFLogxK

U2 - 10.1016/j.jnt.2007.12.003

DO - 10.1016/j.jnt.2007.12.003

M3 - Article

AN - SCOPUS:43049136153

VL - 128

SP - 1458

EP - 1484

JO - Journal of Number Theory

JF - Journal of Number Theory

SN - 0022-314X

IS - 6

ER -