On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design

Chao Wang*, Cheng Hsun Chuang, Yu Wei Chen, Yun Fan Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Systems offering fault-resilient, energy-efficient, soft real-time data communication have wide applications in Industrial Internet-of-Things (IIoT). While there have been extensive studies for fault resilience in real-time embedded systems, investigations from the cyber-physical systems (CPS) perspective are still much needed, as CPS faults occur not just from abnormal conditions in the software/hardware of the system but also from the physical environment in which the system operates. At the same time, in addition to conventional fault-tolerance strategies embedded in the software/hardware of the target system, CPS faults could be mitigated via some strategic systems re-configuration made available by the physical environment. This article presents a design and implementation for CPS fault-resilient data communication in the context of IIoT networks running LoRaWAN, a low-power wide-area networking standard. The proposed design combines collaborative IIoT end devices plus a network gateway piggybacked on a third-party cruising object that is part of the environment. With the focus on data communication, the study illustrates challenges and opportunities to address CPS fault resilience while meeting the needs for energy efficiency and communication timeliness that are common to IIoT systems. The implementation of the design is based on ChirpStack, a widely used open source framework for LoRaWAN. The results from experiment and simulation both show that the proposed scheme can tolerate limited errors of data communication while saving operating energy and maintaining timeliness of data communication to some extent.

Original languageEnglish
Article number36
JournalACM Transactions on Cyber-Physical Systems
Volume8
Issue number3
DOIs
Publication statusPublished - 2024 Jul 13

Keywords

  • Cyber-physical systems
  • data freshness
  • energy efficiency
  • fault tolerance
  • low-power wide-area network
  • mobile gateway

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Hardware and Architecture
  • Computer Networks and Communications
  • Control and Optimization
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'On Cyber-Physical Fault Resilience in Data Communication: A Case From A LoRaWAN Network Systems Design'. Together they form a unique fingerprint.

Cite this