Nuclear magnetic resonance and calorimetric study of the structure, dynamics, and phase behavior of uranyl ion/dipalmitoylphosphatidylcholine complexes

T. H. Huang, A. Blume, S. K. Das Gupta, R. G. Griffin

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1–13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.

Original languageEnglish
Pages (from-to)173-179
Number of pages7
JournalBiophysical Journal
Volume54
Issue number1
DOIs
Publication statusPublished - 1988 Jan 1

Fingerprint

1,2-Dipalmitoylphosphatidylcholine
Magnetic Resonance Spectroscopy
Ions
Powders
Phase Transition
Computer Simulation
Temperature
Differential Scanning Calorimetry

ASJC Scopus subject areas

  • Biophysics

Cite this

Nuclear magnetic resonance and calorimetric study of the structure, dynamics, and phase behavior of uranyl ion/dipalmitoylphosphatidylcholine complexes. / Huang, T. H.; Blume, A.; Das Gupta, S. K.; Griffin, R. G.

In: Biophysical Journal, Vol. 54, No. 1, 01.01.1988, p. 173-179.

Research output: Contribution to journalArticle

@article{c2a98e9e94394b33a4ef26c25f31b85c,
title = "Nuclear magnetic resonance and calorimetric study of the structure, dynamics, and phase behavior of uranyl ion/dipalmitoylphosphatidylcholine complexes",
abstract = "The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1–13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T{"}m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.",
author = "Huang, {T. H.} and A. Blume and {Das Gupta}, {S. K.} and Griffin, {R. G.}",
year = "1988",
month = "1",
day = "1",
doi = "10.1016/S0006-3495(88)82942-4",
language = "English",
volume = "54",
pages = "173--179",
journal = "Biophysical Journal",
issn = "0006-3495",
publisher = "Biophysical Society",
number = "1",

}

TY - JOUR

T1 - Nuclear magnetic resonance and calorimetric study of the structure, dynamics, and phase behavior of uranyl ion/dipalmitoylphosphatidylcholine complexes

AU - Huang, T. H.

AU - Blume, A.

AU - Das Gupta, S. K.

AU - Griffin, R. G.

PY - 1988/1/1

Y1 - 1988/1/1

N2 - The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1–13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.

AB - The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1–13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.

UR - http://www.scopus.com/inward/record.url?scp=0024042513&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024042513&partnerID=8YFLogxK

U2 - 10.1016/S0006-3495(88)82942-4

DO - 10.1016/S0006-3495(88)82942-4

M3 - Article

C2 - 3416028

AN - SCOPUS:0024042513

VL - 54

SP - 173

EP - 179

JO - Biophysical Journal

JF - Biophysical Journal

SN - 0006-3495

IS - 1

ER -