New families of qb-optimal saturated two-level main effects screening designs

Pi Wen Tsai, Steven Gilmour

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


In this paper, we study saturated two-level main effects designs which are commonly used for screening experiments. The QB criterion, which incorporates experimenters' prior beliefs about the probability of factors being active is used to compare designs. We show that under priors with more weight on models of small size, p-efficient designs should be recommended; when models with more parameters are of interest, A-optimal designs would be better. We identify new classes of saturated main effects designs between these two designs under different priors. The way in which the choice of designs depends on experimenters' prior beliefs is demonstrated for the cases when the number of runs N - 2 mod 4. A novel method of construction of QB-optimal designs using conference matrices is introduced. Complete families of optimal designs are given for N = 6; 10; 14; 18; 26; 30.

Original languageEnglish
Pages (from-to)605-617
Number of pages13
JournalStatistica Sinica
Issue number2
Publication statusPublished - 2016 Apr


  • Conference matrix
  • Model uncertainty
  • Prior information
  • QB-criterion
  • Screening
  • Weighing design

ASJC Scopus subject areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty


Dive into the research topics of 'New families of qb-optimal saturated two-level main effects screening designs'. Together they form a unique fingerprint.

Cite this