Abstract
With the increasing importance of SQUID-based magnetically labeled immunoassay, the study on the synthesis of controllable sizes of magnetic nanoparticles plays a role to promote the accuracy of the immunoassay. In this work, Fe3O4 nano-particles coated with a suitable bio-probe (biotin) are synthesized through chemical co-precipitation process to probe the bio-target (avidin). Through the synthesis developed here, the particle hydrodynamic diameter can be adjusted from 30 to 90 nm, which provide candidates for probing various bio-targets in the future. The amount of the magnetically labeled avidin is then analyzed via measuring the saturated magnetization or the remanence of the sample by using a SQUID magnetometer.
Original language | English |
---|---|
Pages (from-to) | 668-671 |
Number of pages | 4 |
Journal | IEEE Transactions on Applied Superconductivity |
Volume | 15 |
Issue number | 2 PART I |
DOIs | |
Publication status | Published - 2005 Jun 1 |
Keywords
- Immunoassay
- Nanomagnetic particles
- SQUIDs
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering