Abstract
Na–CO2 battery is one of the most promising energy storage devices for the exploration of Mar. To fix the evaporation problem of liquid electrolytes in an open system, solid-state electrolyte Na3Zr2Si2PO12 (NZSP) is used to fabricate a solid-state Na–CO2 battery. In the battery, the interface between the Na-metal anode and NZSP plays a vital role in improving electrochemical performance. The interfacial parasitic reaction between NZSP and Na-metal results in a Na-rich kinetically stable interphase. (200) and (−111) planes are the preferentially etched crystal planes of NZSP, as SiO4 and PO4 tetrahedrons on the planes are easily broken by extra Na-ion injection. Aside from the interfacial reaction, the poor contact between Na-metal and NZSP is a more serious problem, which leads to large interfacial resistance and poor cycling stability. To fix this problem, carbon black is mixed with melted Na-metal to prepare a composite anode (Na@C). The Na@C composite anode easily wets NZSP, thus decreasing the interfacial resistance from 918 to 98 Ω cm2. Symmetrical cells stably cycled 1100 h at 0.1 mA cm−2, when using Na@C as the electrode. Furthermore, Na–CO2 battery with Na@C composite anode also shows a prolonged cycling life.
Original language | English |
---|---|
Article number | 166123 |
Journal | Journal of Alloys and Compounds |
Volume | 922 |
DOIs | |
Publication status | Published - 2022 Nov 20 |
Keywords
- Composite anode
- Kinetically stable interphase
- NZSP
- Na–CO battery
- Preferentially etched crystal planes
ASJC Scopus subject areas
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry