Abstract
Due to the growth of thin-film solar photovoltaic (PV) market for renewable energy sources, the development of versatile technique for scribing surface patterns with new record efficiency is crucial. This study presents an ultrafast-laser process for noncontact and chemical-free scribing of thin-film layers in CuInxGa(1-x)Se2 (CIGS)-based PV modules. The proposed ultrafast laser scribing process for single- and multiple-pass patterning was performed using an infrared laser system comprising a femtosecond laser source, galvano-mirror scanner, and high-precision motor driven stage. The interaction between laser beam and three thin films in CIGS-based PV modules was determined by investigating potential film-removal mechanisms, such as geometrical, thermal, mechanical, and optical properties. Well-defined grooves were successfully obtained on thin-film layers by applying pulse energies near the ablation threshold. The experimental results and numerical calculations show that the laser-material interactions indicate that the proposed surface-pattern technique is precise. The energy transfer between the laser beam and thin-film device was affected by introducing an electron-photon coupling variable. The study results show the surface-pattern characteristics of applying an ultrafast laser to thin-film PV modules under controlled process conditions.
Original language | English |
---|---|
Pages (from-to) | 41-47 |
Number of pages | 7 |
Journal | Microelectronic Engineering |
Volume | 143 |
DOIs | |
Publication status | Published - 2015 Aug 1 |
Keywords
- CIGS
- Micromachining
- Thin film
- Thin-film PV module
- Ultra-short laser
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering