TY - JOUR
T1 - Multidimensional (0D to 3D) alkaline-earth metal diphosphonates
T2 - Synthesis, structural diversity, and luminescence properties
AU - Senthil Raja, Duraisamy
AU - Lin, Pin Chun
AU - Liu, Wei Ren
AU - Zhan, Jun Xiang
AU - Fu, Xin Yi
AU - Lin, Chia Her
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/5/4
Y1 - 2015/5/4
N2 - A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state 31P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[LnxMg1-x(hedpH2)2(hedpH2-x)]·3H2O (1Ln), (H2NMe2)2[LnxCa1-x(hedpH2)(hedpH2-x)] (2Ln), (H2NMe2)2[LnxSr3-x(hedpH2)3(hedpH2-x)(H2O)2] (3Ln), and [LnxBa3-x(hedpH2)2(hedpH2-x)]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu3+ (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb3+. Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%).
AB - A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state 31P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[LnxMg1-x(hedpH2)2(hedpH2-x)]·3H2O (1Ln), (H2NMe2)2[LnxCa1-x(hedpH2)(hedpH2-x)] (2Ln), (H2NMe2)2[LnxSr3-x(hedpH2)3(hedpH2-x)(H2O)2] (3Ln), and [LnxBa3-x(hedpH2)2(hedpH2-x)]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu3+ (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb3+. Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%).
UR - http://www.scopus.com/inward/record.url?scp=84929222969&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929222969&partnerID=8YFLogxK
U2 - 10.1021/ic5029993
DO - 10.1021/ic5029993
M3 - Article
AN - SCOPUS:84929222969
SN - 0020-1669
VL - 54
SP - 4268
EP - 4278
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 9
ER -