Multidimensional (0D to 3D) alkaline-earth metal diphosphonates: Synthesis, structural diversity, and luminescence properties

Duraisamy Senthil Raja, Pin Chun Lin, Wei Ren Liu*, Jun Xiang Zhan, Xin Yi Fu, Chia Her Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state 31P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[LnxMg1-x(hedpH2)2(hedpH2-x)]·3H2O (1Ln), (H2NMe2)2[LnxCa1-x(hedpH2)(hedpH2-x)] (2Ln), (H2NMe2)2[LnxSr3-x(hedpH2)3(hedpH2-x)(H2O)2] (3Ln), and [LnxBa3-x(hedpH2)2(hedpH2-x)]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu3+ (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb3+. Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%).

Original languageEnglish
Pages (from-to)4268-4278
Number of pages11
JournalInorganic Chemistry
Issue number9
Publication statusPublished - 2015 May 4
Externally publishedYes

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Multidimensional (0D to 3D) alkaline-earth metal diphosphonates: Synthesis, structural diversity, and luminescence properties'. Together they form a unique fingerprint.

Cite this