Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon)

Chun Lin Huang, Shih Ying Hwang, Yu Chung Chiang, Tsan Piao Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

74 Citations (Scopus)


Rice blast disease resistance to the fungal pathogen Magnaporthe grisea is triggered by a physical interaction between the protein products of the host R (resistance) gene, Pi-ta, and the pathogen Avr (avirulence) gene, AVR-pita. The genotype variation and resistant/susceptible phenotype at the Pi-ta locus of wild rice (Oryza rufipogon), the ancestor of cultivated rice (O. sativa), was surveyed in 36 locations worldwide to study the molecular evolution and functional adaptation of the Pi-ta gene. The low nucleotide polymorphism of the Pi-ta gene of O. rufipogon was similar to that of O. sativa, but greatly differed from what has been reported for other O. rufipogon genes. The haplotypes can be subdivided into two divergent haplogroups named H1 and H2. H1 is derived from H2, with nearly no variation and at a low frequency. H2 is common and is the ancestral form. The leucine-rich repeat (LRR) domain has a high πnon/πsyn ratio, and the low polymorphism of the Pi-ta gene might have primarily been caused by recurrent selective sweep and constraint by other putative physiological functions. Meanwhile, we provide data to show that the amino acid Ala-918 of H1 in the LRR domain has a close relationship with the resistant phenotype. H1 might have recently arisen during rice domestication and may be associated with the scenario of a blast pathogen-host shift from Italian millet to rice.

Original languageEnglish
Pages (from-to)1527-1538
Number of pages12
Issue number3
Publication statusPublished - 2008 Jul

ASJC Scopus subject areas

  • Genetics


Dive into the research topics of 'Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon)'. Together they form a unique fingerprint.

Cite this