Mechanistic studies of water-gas-shift reaction on transition metals

Chia Hao Lin, Chung Liang Chen, Jeng-Han Wang

Research output: Contribution to journalArticle

84 Citations (Scopus)

Abstract

A density functional theory (DFT) calculation has been carried out to investigate a water-gas-shift reaction (WGSR) on a series of chemical related materials of Co, Ni, and Cu (from the 3d row); Rh, Pd, and Ag (from the 4d row); and Ir, Pt, and Au (from the 5d row). The result shows that WGSR mechanism involves the redox, carboxyl, and formate pathways, which correspond to CO* + O* → CO2(g), CO* + OH* → COOH* → CO2(g) + H*, and CO* + H* + O* → CHO* + O* → HCOO** → CO 2(g) + H*, respectively. The reaction barriers in the three pathways are competitive and have a similar trend that groups 9 > 10 > 11 and 3d > 4d >5d. Thus, the bottom-right d-block metals (Cu, Pt, and Au) show better WGSR activity. The experimentally most observed formate can be attributed to its lower formation and higher dissociation barriers. Furthermore, the catalytic behavior on these active metal surfaces has been examined. The result shows that WGSR is mostly follows the redox pathway on Au(111) surface due to the negligible CO* oxidation barriers; on the other hand, all the three pathways contribute similarly in WGSR on Cu(111) and Pt(111) surfaces. Finally, the feasible steps of formyl in Fischer-Tropsch synthesis (FTS), the combustion reaction, and formate pathway, CHO* → CH* + O*, CHO* → CO* + H*, and CHO* + O* → HCOO**, respectively, have also been studied. The result shows that activities of FTS and the WGSR have opposite trends on these metal surfaces.

Original languageEnglish
Pages (from-to)18582-18588
Number of pages7
JournalJournal of Physical Chemistry C
Volume115
Issue number38
DOIs
Publication statusPublished - 2011 Sep 29

Fingerprint

formic acid
Water gas shift
Carbon Monoxide
Transition metals
transition metals
shift
gases
water
Fischer-Tropsch synthesis
formates
Metals
metal surfaces
trends
Density functional theory
Thermodynamic properties
synthesis
Oxidation
dissociation
methylidyne
density functional theory

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Cite this

Mechanistic studies of water-gas-shift reaction on transition metals. / Lin, Chia Hao; Chen, Chung Liang; Wang, Jeng-Han.

In: Journal of Physical Chemistry C, Vol. 115, No. 38, 29.09.2011, p. 18582-18588.

Research output: Contribution to journalArticle

Lin, Chia Hao ; Chen, Chung Liang ; Wang, Jeng-Han. / Mechanistic studies of water-gas-shift reaction on transition metals. In: Journal of Physical Chemistry C. 2011 ; Vol. 115, No. 38. pp. 18582-18588.
@article{13d86a9ed83949f4ac0003b22867ea42,
title = "Mechanistic studies of water-gas-shift reaction on transition metals",
abstract = "A density functional theory (DFT) calculation has been carried out to investigate a water-gas-shift reaction (WGSR) on a series of chemical related materials of Co, Ni, and Cu (from the 3d row); Rh, Pd, and Ag (from the 4d row); and Ir, Pt, and Au (from the 5d row). The result shows that WGSR mechanism involves the redox, carboxyl, and formate pathways, which correspond to CO* + O* → CO2(g), CO* + OH* → COOH* → CO2(g) + H*, and CO* + H* + O* → CHO* + O* → HCOO** → CO 2(g) + H*, respectively. The reaction barriers in the three pathways are competitive and have a similar trend that groups 9 > 10 > 11 and 3d > 4d >5d. Thus, the bottom-right d-block metals (Cu, Pt, and Au) show better WGSR activity. The experimentally most observed formate can be attributed to its lower formation and higher dissociation barriers. Furthermore, the catalytic behavior on these active metal surfaces has been examined. The result shows that WGSR is mostly follows the redox pathway on Au(111) surface due to the negligible CO* oxidation barriers; on the other hand, all the three pathways contribute similarly in WGSR on Cu(111) and Pt(111) surfaces. Finally, the feasible steps of formyl in Fischer-Tropsch synthesis (FTS), the combustion reaction, and formate pathway, CHO* → CH* + O*, CHO* → CO* + H*, and CHO* + O* → HCOO**, respectively, have also been studied. The result shows that activities of FTS and the WGSR have opposite trends on these metal surfaces.",
author = "Lin, {Chia Hao} and Chen, {Chung Liang} and Jeng-Han Wang",
year = "2011",
month = "9",
day = "29",
doi = "10.1021/jp2034467",
language = "English",
volume = "115",
pages = "18582--18588",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "38",

}

TY - JOUR

T1 - Mechanistic studies of water-gas-shift reaction on transition metals

AU - Lin, Chia Hao

AU - Chen, Chung Liang

AU - Wang, Jeng-Han

PY - 2011/9/29

Y1 - 2011/9/29

N2 - A density functional theory (DFT) calculation has been carried out to investigate a water-gas-shift reaction (WGSR) on a series of chemical related materials of Co, Ni, and Cu (from the 3d row); Rh, Pd, and Ag (from the 4d row); and Ir, Pt, and Au (from the 5d row). The result shows that WGSR mechanism involves the redox, carboxyl, and formate pathways, which correspond to CO* + O* → CO2(g), CO* + OH* → COOH* → CO2(g) + H*, and CO* + H* + O* → CHO* + O* → HCOO** → CO 2(g) + H*, respectively. The reaction barriers in the three pathways are competitive and have a similar trend that groups 9 > 10 > 11 and 3d > 4d >5d. Thus, the bottom-right d-block metals (Cu, Pt, and Au) show better WGSR activity. The experimentally most observed formate can be attributed to its lower formation and higher dissociation barriers. Furthermore, the catalytic behavior on these active metal surfaces has been examined. The result shows that WGSR is mostly follows the redox pathway on Au(111) surface due to the negligible CO* oxidation barriers; on the other hand, all the three pathways contribute similarly in WGSR on Cu(111) and Pt(111) surfaces. Finally, the feasible steps of formyl in Fischer-Tropsch synthesis (FTS), the combustion reaction, and formate pathway, CHO* → CH* + O*, CHO* → CO* + H*, and CHO* + O* → HCOO**, respectively, have also been studied. The result shows that activities of FTS and the WGSR have opposite trends on these metal surfaces.

AB - A density functional theory (DFT) calculation has been carried out to investigate a water-gas-shift reaction (WGSR) on a series of chemical related materials of Co, Ni, and Cu (from the 3d row); Rh, Pd, and Ag (from the 4d row); and Ir, Pt, and Au (from the 5d row). The result shows that WGSR mechanism involves the redox, carboxyl, and formate pathways, which correspond to CO* + O* → CO2(g), CO* + OH* → COOH* → CO2(g) + H*, and CO* + H* + O* → CHO* + O* → HCOO** → CO 2(g) + H*, respectively. The reaction barriers in the three pathways are competitive and have a similar trend that groups 9 > 10 > 11 and 3d > 4d >5d. Thus, the bottom-right d-block metals (Cu, Pt, and Au) show better WGSR activity. The experimentally most observed formate can be attributed to its lower formation and higher dissociation barriers. Furthermore, the catalytic behavior on these active metal surfaces has been examined. The result shows that WGSR is mostly follows the redox pathway on Au(111) surface due to the negligible CO* oxidation barriers; on the other hand, all the three pathways contribute similarly in WGSR on Cu(111) and Pt(111) surfaces. Finally, the feasible steps of formyl in Fischer-Tropsch synthesis (FTS), the combustion reaction, and formate pathway, CHO* → CH* + O*, CHO* → CO* + H*, and CHO* + O* → HCOO**, respectively, have also been studied. The result shows that activities of FTS and the WGSR have opposite trends on these metal surfaces.

UR - http://www.scopus.com/inward/record.url?scp=80053079618&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80053079618&partnerID=8YFLogxK

U2 - 10.1021/jp2034467

DO - 10.1021/jp2034467

M3 - Article

AN - SCOPUS:80053079618

VL - 115

SP - 18582

EP - 18588

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 38

ER -