TY - JOUR
T1 - Lp-Taylor approximations characterize the Sobolev space W1,p
AU - Spector, Daniel
N1 - Publisher Copyright:
© 2015 .
PY - 2015/4/1
Y1 - 2015/4/1
N2 - In this note, we introduce a variant of Calderón and Zygmund's notion of Lp-differentiability - an Lp-Taylor approximation. Our first result is that functions in the Sobolev space W1,p(RN) possess a first-order Lp-Taylor approximation. This is in analogy with Calderón and Zygmund's result concerning the Lp-differentiability of Sobolev functions. In fact, the main result we announce here is that the first-order Lp-Taylor approximation characterizes the Sobolev space W1,p(RN), and therefore implies Lp-differentiability. Our approach establishes connections between some characterizations of Sobolev spaces due to Swanson using Calderón-Zygmund classes with others due to Bourgain, Brézis, and Mironescu using nonlocal functionals with still others of the author and Mengesha using nonlocal gradients. That any two characterizations of Sobolev spaces are related is not surprising; however, one consequence of our analysis is a simple condition for determining whether a function of bounded variation is in a Sobolev space.
AB - In this note, we introduce a variant of Calderón and Zygmund's notion of Lp-differentiability - an Lp-Taylor approximation. Our first result is that functions in the Sobolev space W1,p(RN) possess a first-order Lp-Taylor approximation. This is in analogy with Calderón and Zygmund's result concerning the Lp-differentiability of Sobolev functions. In fact, the main result we announce here is that the first-order Lp-Taylor approximation characterizes the Sobolev space W1,p(RN), and therefore implies Lp-differentiability. Our approach establishes connections between some characterizations of Sobolev spaces due to Swanson using Calderón-Zygmund classes with others due to Bourgain, Brézis, and Mironescu using nonlocal functionals with still others of the author and Mengesha using nonlocal gradients. That any two characterizations of Sobolev spaces are related is not surprising; however, one consequence of our analysis is a simple condition for determining whether a function of bounded variation is in a Sobolev space.
UR - http://www.scopus.com/inward/record.url?scp=84924450769&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924450769&partnerID=8YFLogxK
U2 - 10.1016/j.crma.2015.01.010
DO - 10.1016/j.crma.2015.01.010
M3 - Article
AN - SCOPUS:84924450769
SN - 1631-073X
VL - 353
SP - 327
EP - 332
JO - Comptes Rendus Mathematique
JF - Comptes Rendus Mathematique
IS - 4
ER -