Abstract
Despite considerable progress in face recognition technology in recent years, deep learning (DL) and convolutional neural networks (CNN) have revealed commendable recognition effects with the advent of artificial intelligence and big data. FaceNet was presented in 2015 and is able to significantly improve the accuracy of face recognition, while also being powerfully built to counteract several common issues, such as occlusion, blur, illumination change, and different angles of head pose. However, not all hardware can sustain the heavy computing load in the execution of the FaceNet model. In applications in the security industry, lightweight and efficient face recognition are two key points for facilitating the deployment of DL and CNN models directly in field devices, due to their limited edge computing capability and low equipment cost. To this end, this paper provides a lightweight learning network improved from FaceNet, which is called FN13, to break through the hardware limitation of constrained computational resources. The proposed FN13 takes the advantage of center loss to reduce the variations of the between-class features and enlarge the difference of the within-class features, instead of the triplet loss by using FaceNet. The resulting model reduces the number of parameters and maintains a high degree of accuracy, only requiring few grayscale reference images per subject. The validity of FN13 is demonstrated by conducting experiments on the Labeled Faces in the Wild (LFW) dataset, as well as an analytical discussion regarding specific disguise problems.
Original language | English |
---|---|
Article number | 6114 |
Pages (from-to) | 1-20 |
Number of pages | 20 |
Journal | Sensors (Switzerland) |
Volume | 20 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2020 Nov 1 |
Keywords
- Deep convolutional network
- Face recognition
- FaceNet
- Lightweight optimization
- Resource constraints
- Surveillance system
ASJC Scopus subject areas
- Analytical Chemistry
- Biochemistry
- Atomic and Molecular Physics, and Optics
- Instrumentation
- Electrical and Electronic Engineering