TY - GEN
T1 - Learning to distill
T2 - 26th International Conference on Computational Linguistics, COLING 2016
AU - Chen, Kuan Yu
AU - Liu, Shih Hung
AU - Chen, Berlin
AU - Wang, Hsin Min
N1 - Publisher Copyright:
© 1963-2018 ACL.
PY - 2016
Y1 - 2016
N2 - In the context of natural language processing, representation learning has emerged as a newly active research subject because of its excellent performance in many applications. Learning representations of words is a pioneering study in this school of research. However, paragraph (or sentence and document) embedding learning is more suitable/reasonable for some tasks, such as sentiment classification and document summarization. Nevertheless, as far as we are aware, there is relatively less work focusing on the development of unsupervised paragraph embedding methods. Classic paragraph embedding methods infer the representation of a given paragraph by considering all of the words occurring in the paragraph. Consequently, those stop or function words that occur frequently may mislead the embedding learning process to produce a misty paragraph representation. Motivated by these observations, our major contributions in this paper are twofold. First, we propose a novel unsupervised paragraph embedding method, named the essence vector (EV) model, which aims at not only distilling the most representative information from a paragraph but also excluding the general background information to produce a more informative low-dimensional vector representation for the paragraph. We evaluate the proposed EV model on benchmark sentiment classification and multi-document summarization tasks. The experimental results demonstrate the effectiveness and applicability of the proposed embedding method. Second, in view of the increasing importance of spoken content processing, an extension of the EV model, named the denoising essence vector (D-EV) model, is proposed. The D-EV model not only inherits the advantages of the EV model but also can infer a more robust representation for a given spoken paragraph against imperfect speech recognition. The utility of the D-EV model is evaluated on a spoken document summarization task, confirming the practical merits of the proposed embedding method in relation to several well-practiced and state-of-the-art summarization methods.
AB - In the context of natural language processing, representation learning has emerged as a newly active research subject because of its excellent performance in many applications. Learning representations of words is a pioneering study in this school of research. However, paragraph (or sentence and document) embedding learning is more suitable/reasonable for some tasks, such as sentiment classification and document summarization. Nevertheless, as far as we are aware, there is relatively less work focusing on the development of unsupervised paragraph embedding methods. Classic paragraph embedding methods infer the representation of a given paragraph by considering all of the words occurring in the paragraph. Consequently, those stop or function words that occur frequently may mislead the embedding learning process to produce a misty paragraph representation. Motivated by these observations, our major contributions in this paper are twofold. First, we propose a novel unsupervised paragraph embedding method, named the essence vector (EV) model, which aims at not only distilling the most representative information from a paragraph but also excluding the general background information to produce a more informative low-dimensional vector representation for the paragraph. We evaluate the proposed EV model on benchmark sentiment classification and multi-document summarization tasks. The experimental results demonstrate the effectiveness and applicability of the proposed embedding method. Second, in view of the increasing importance of spoken content processing, an extension of the EV model, named the denoising essence vector (D-EV) model, is proposed. The D-EV model not only inherits the advantages of the EV model but also can infer a more robust representation for a given spoken paragraph against imperfect speech recognition. The utility of the D-EV model is evaluated on a spoken document summarization task, confirming the practical merits of the proposed embedding method in relation to several well-practiced and state-of-the-art summarization methods.
UR - http://www.scopus.com/inward/record.url?scp=85055009338&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055009338&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85055009338
SN - 9784879747020
T3 - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers
SP - 358
EP - 368
BT - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016
PB - Association for Computational Linguistics, ACL Anthology
Y2 - 11 December 2016 through 16 December 2016
ER -