l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats

Wen Hsin Tsai, Chung Hsin Wu, Hong Jeng Yu*, Chiang Ting Chien

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Aims: Upregulation of substance P (SP) and neurokinin-1 receptor (NK1R) activation induces pro-inflammatory bladder hyperactivity through the PKC/ERK/NF-κB/ICAM-1/IL-33 signaling pathways to increase the leukocyte infiltration and adhesion leading to reactive oxygen species (ROS) production, autophagy, and apoptosis. l-Theanine is a unique non-protein-forming amino acid present in tea (Camellia sinensis [L.] O. Kuntze) with its antioxidant, anti-inflammatory, and relaxation effects to improve cognition, mood, gastric ulcer injury, and cerebral ischemia/reperfusion injury, and posttraumatic stress disorder. We explored the protective effect of l-theanine on SP-induced bladder hyperactivity. Methods: In urethane-anesthetized female Wistar rats, we explored the transcystometrogram, pelvic nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, apoptosis-related Caspase 3/poly-(ADP-ribose)-polymerase (PARP), and autophagy-mediated LC3 II expression by Western blot, electrophoretic-mobility shift assay and immunohistochemistry, bladder ROS amount by a ultrasensitive chemiluminescence method, and possible ROS sources from the different leukocytes by specific stains in SP-evoked hyperactive bladder. Results: l-Theanine dose-dependently depressed H2O2 and HOCl activity in vitro. In urethane-anesthetized female Wistar rats, intra-arterial SP through NK1R activation increased voiding frequency (shortened intercontraction intervals) associated with the increase in bladder nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, Caspase 3/PARP-mediated apoptosis, LC3 II-mediated autophagy, ROS amount, neutrophils adhesion, CD68 (monocyte/macrophage) infiltration, and mast cells degranulation in the hyperactive bladder. Intragastrical l-theanine (15 mg/kg) twice daily for 2 weeks efficiently ameliorated all the enhanced parameters in the SP-treated hyperactive bladder. Conclusions: In conclusion, l-theanine through antioxidant and anti-inflammatory actions ameliorates SP-induced bladder hyperactivity via the inhibition of proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, oxidative stress, bladder nerve hyperactivity, apoptosis, and autophagy. Neurourol. Urodynam. 36:297–307, 2017.

Original languageEnglish
Pages (from-to)297-307
Number of pages11
JournalNeurourology and Urodynamics
Volume36
Issue number2
DOIs
Publication statusPublished - 2017 Feb 1

Keywords

  • apoptosis
  • autophagy
  • inflammation
  • l-theanine
  • overactive bladder
  • reactive oxygen species

ASJC Scopus subject areas

  • Clinical Neurology
  • Urology

Fingerprint

Dive into the research topics of 'l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats'. Together they form a unique fingerprint.

Cite this