TY - JOUR
T1 - Kummer theory of division points over Drinfeld modules of rank one
AU - Chi, Wen Chen
AU - Li, Anly
N1 - Copyright:
Copyright 2005 Elsevier B.V., All rights reserved.
PY - 2001/2/23
Y1 - 2001/2/23
N2 - A Kummer theory of division points over rank one Drinfeld A=Fq[T]- modules defined over global function fields was given. The results are in complete analogy with the classical Kummer theory of division points over the multiplicative algebraic group Gm defined over number fields.
AB - A Kummer theory of division points over rank one Drinfeld A=Fq[T]- modules defined over global function fields was given. The results are in complete analogy with the classical Kummer theory of division points over the multiplicative algebraic group Gm defined over number fields.
KW - 11G09
UR - http://www.scopus.com/inward/record.url?scp=0035937079&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035937079&partnerID=8YFLogxK
U2 - 10.1016/S0022-4049(99)00161-9
DO - 10.1016/S0022-4049(99)00161-9
M3 - Article
AN - SCOPUS:0035937079
VL - 156
SP - 171
EP - 185
JO - Journal of Pure and Applied Algebra
JF - Journal of Pure and Applied Algebra
SN - 0022-4049
IS - 2-3
ER -