Abstract
AlGaN/GaN high electron mobility transistors (HEMTs) were used to sense the binding between double stranded DNA (dsDNA) and the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (N protein). The sensing signals were the drain current change of the HEMTs induced by the protein-dsDNA binding. Binding-site models using surface coverage ratios were utilized to analyze the signals from the HEMT-based sensors to extract the dissociation constants and predict the number of binding sites. Two dissociation constants, KD1 = 0.0955 nM, KD2 = 51.23 nM, were obtained by fitting the experimental results into the two-binding-site model. The result shows that this technique is more competitive than isotope-labeling electrophoretic mobility shift assay (EMSA). We demonstrated that AlGaN/GaN HEMTs were highly potential in constructing a semiconductor-based-sensor binding assay to extract the dissociation constants of nucleotide-protein interaction.
Original language | English |
---|---|
Pages (from-to) | 334-339 |
Number of pages | 6 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 193 |
DOIs | |
Publication status | Published - 2014 Mar 31 |
Externally published | Yes |
Keywords
- Binding sites
- Dissociation constants
- GaN
- HEMTs
- SARS
- Sensors
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry