Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles

Shao Sian Li, Chi Huang Chang, Ying Chiao Wang, Chung Wei Lin, Di Yan Wang, Jou Chun Lin, Chia Chun Chen, Hwo Shuenn Sheu, Hao Chung Chia, Wei Ru Wu, U. Ser Jeng, Chi Te Liang, Raman Sankar, Fang Cheng Chou, Chun Wei Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

160 Citations (Scopus)

Abstract

This work proposes a novel approach to modulate the nucleation and growth of perovskite crystals in planar perovskite (CH3NH3PbI3-xClx) solar cells by intermixing precursor-capped inorganic nanoparticles of PbS. A small amount of dispersed PbS nanoparticles which were covered with perovskite precursor molecules of methylammonium iodide (CH3NH3I, MAI) through the ligand-exchange treatment functioned as effective seed-like nucleation sites to promote the formation of perovskite lattice structures. Through this intermixing-seeded growth technique, substantial morphological improvements, such as increased crystal domains, enhanced coverage, and uniformity, were realized in the perovskite thin films, and the corresponding solar cell devices exhibited a promising power conversion efficiency of 17.4%, showing an enhancement of approximately 25% compared to that of the controlled pristine solar cell device. The substantially enhanced crystal orientation, particularly along the direction perpendicular to the substrate, was evident from the synchrotron-based grazing incidence wide-angle X-ray scattering data. This observation was consistent with the enhanced carrier diffusion lengths and excellent reproducibility of high fill factors of the planar heterojunction perovskite devices fabricated through the proposed technique.

Original languageEnglish
Pages (from-to)1282-1289
Number of pages8
JournalEnergy and Environmental Science
Volume9
Issue number4
DOIs
Publication statusPublished - 2016 Apr

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint

Dive into the research topics of 'Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles'. Together they form a unique fingerprint.

Cite this