Interaction transfer of silicon atoms forming Co silicide for Co/ 3 × 3 R 30°-Ag/Si(111) and related magnetic properties

Cheng Hsun Tony Chang, Tsu Yi Fu, Jyh Shen Tsay*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Combined scanning tunneling microscopy, Auger electron spectroscopy, and surface magneto-optic Kerr effect studies were employed to study the microscopic structures and magnetic properties for ultrathin Co/ 3 × 3 R 30°-Ag/Si(111). As the annealing temperature increases, the upward diffusion of Si atoms and formation of Co silicides occurs at temperature above 400 K. Below 600 K, the 3 × 3 R 30°-Ag/Si(111) surface structure persists. We propose an interaction transferring mechanism of Si atoms across the 3 × 3 R 30°-Ag layer. The upward transferred Si atoms react with Co atoms to form Co silicide. The step height across the edge of the island, a separation of 0.75 nm from the analysis of the 2 × 2 structure, and the calculations of the normalized Auger signal serve as strong evidences for the formation of CoSi2 at the interface. The interaction transferring mechanism for Si atoms enhances the possibility of interactions between Co and Si atoms. The smoothness of the surface is advantage for that the easy axis of magnetization for Co/ 3 × 3 R 30°-Ag/Si(111) is in the surface plane. This provides a possible way of growing flat magnetic layers on silicon substrate with controllable silicide formation and shows potential applications in spintronics devices.

Original languageEnglish
Article number17B733
JournalJournal of Applied Physics
Volume117
Issue number17
DOIs
Publication statusPublished - 2015 May 7

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Interaction transfer of silicon atoms forming Co silicide for Co/ 3 × 3 R 30°-Ag/Si(111) and related magnetic properties'. Together they form a unique fingerprint.

Cite this