Abstract
We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.
Original language | English |
---|---|
Pages (from-to) | 197-208 |
Number of pages | 12 |
Journal | Journal of the Australian Mathematical Society |
Volume | 77 |
Issue number | 2 |
Publication status | Published - 2004 Oct 1 |
Fingerprint
ASJC Scopus subject areas
- Mathematics(all)
Cite this
Integral points on elliptic curves over function fields. / Chi, Wen-Chen; Lai, K. F.; Tan, K. S.
In: Journal of the Australian Mathematical Society, Vol. 77, No. 2, 01.10.2004, p. 197-208.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Integral points on elliptic curves over function fields
AU - Chi, Wen-Chen
AU - Lai, K. F.
AU - Tan, K. S.
PY - 2004/10/1
Y1 - 2004/10/1
N2 - We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.
AB - We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.
UR - http://www.scopus.com/inward/record.url?scp=10244235411&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=10244235411&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:10244235411
VL - 77
SP - 197
EP - 208
JO - Journal of the Australian Mathematical Society
JF - Journal of the Australian Mathematical Society
SN - 1446-7887
IS - 2
ER -