### Abstract

We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.

Original language | English |
---|---|

Pages (from-to) | 197-208 |

Number of pages | 12 |

Journal | Journal of the Australian Mathematical Society |

Volume | 77 |

Issue number | 2 |

Publication status | Published - 2004 Oct 1 |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Journal of the Australian Mathematical Society*,

*77*(2), 197-208.

**Integral points on elliptic curves over function fields.** / Chi, Wen-Chen; Lai, K. F.; Tan, K. S.

Research output: Contribution to journal › Article

*Journal of the Australian Mathematical Society*, vol. 77, no. 2, pp. 197-208.

}

TY - JOUR

T1 - Integral points on elliptic curves over function fields

AU - Chi, Wen-Chen

AU - Lai, K. F.

AU - Tan, K. S.

PY - 2004/10/1

Y1 - 2004/10/1

N2 - We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.

AB - We prove a new formula for the number of integral points on an elliptic curve over a function field without assuming that the coefficient field is algebraically closed. This is an improvement on the standard results of Hindry-Silverman.

UR - http://www.scopus.com/inward/record.url?scp=10244235411&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=10244235411&partnerID=8YFLogxK

M3 - Article

VL - 77

SP - 197

EP - 208

JO - Journal of the Australian Mathematical Society

JF - Journal of the Australian Mathematical Society

SN - 1446-7887

IS - 2

ER -