Abstract
An efficient visible-to-infrared conversion film is made by blending CdTe quantum dots (CdTe QDs) of 12 nm diameter in a polyvinylpyrrolidone 360 (PVP 360) polymer matrix cast by water solution. The solid-state photoluminescence quantum efficiency exceeds 10% with emission peak at 810 nm. Strong 810 emission is obtained by combining the quantum dot film and a green polyfluorene light-emitting diode. Color filter is used to remove residual light below 780 nm to make it entirely invisible. Infrared photo-detector is made by blending poly[5-(5-(2,5-bis(decyloxy)-4-methylphenyl)thiophen-2-yl)-2, 3-bis(4-(2-ethylhexyloxy)phenyl)-7-(5-methylthiophen-2-yl)thieno[3,4-b]pyrazine] (PBDOTTP) with band-gap 1.2 eV and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM). The pixel contains one PD surrounded by four PLED on its four sides. The active areas of the five devices are all 1 cm by 1 cm and they are on the same plane. Infrared proximity sensor with photo-current over 300 nA at 10 cm object distance is achieved by detecting the reflected infrared signal.
Original language | English |
---|---|
Pages (from-to) | 2312-2318 |
Number of pages | 7 |
Journal | Organic Electronics |
Volume | 13 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2012 Nov |
Externally published | Yes |
Keywords
- Infrared proximity sensor
- PLED
- Quantum dots
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Chemistry(all)
- Condensed Matter Physics
- Materials Chemistry
- Electrical and Electronic Engineering