Influence of N2 gas flow on the high-frequency magneto-electrical properties of ZnO thin films

Ching Chung Wang, Chao Ming Fu*, Yu Min Hu, Cheng De Huang, Hsiang Lin Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Undoped and N-doped ZnO (ZnO:N) thin films were prepared with different N2 flow rates on Al2O3 substrates by rf magnetron sputtering methods. The structure and high-frequency magneto-electrical properties of the ZnO:N films varied drastically with the variation of N2 flow rate. With the introduction of N2 gas during deposition, short hexagonal-like nanorods grown at grain surface were observed. In comparison with the undoped ZnO film, Raman spectra of the ZnO:N films revealed four anomalous peaks at 276, 510, 586 and cm-1, which are attributed to nitrogen-related defect complexes. Complex impedance spectra of all the films were analyzed by an equivalent circuit, employing two sets of parallel resistance and capacitance components in series to represent the oxide grain and grain boundary contributions, respectively. The analyzed results have implied that the N2 flow rate can effectively alter the defect concentration of the films, and consequently adjust the ac conductivity, magneto-dynamical and dielectric relaxation behaviors of the oxide-based magnetic semiconductor polycrystalline films.

Original languageEnglish
Article number2278709
JournalIEEE Transactions on Magnetics
Issue number1
Publication statusPublished - 2014 Jan


  • Dilute magnetic semiconductor (DMS)
  • Equivalent circuit analysis
  • Impedance spectroscopy
  • Intrinsic defect
  • N-doped zinc oxide (Zno)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Influence of N2 gas flow on the high-frequency magneto-electrical properties of ZnO thin films'. Together they form a unique fingerprint.

Cite this