Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1β release through the inhibition of Nogo-A expression

Po Kuan Chao, Kwok Tung Lu, Ji Yi Jhu, Yu Yuan P. Wo, Tai Chun Huang, Long Sun Ro, Yi Ling Yang

Research output: Contribution to journalArticle

17 Citations (Scopus)


Background: Nogo-A is a member of the reticulon family of membrane-associated proteins and plays an important role in axonal remodeling. The present study aimed to investigate alterations in Nogo-A expression following traumatic brain injury (TBI)-induced inflammation and neuronal damage.Methods: A weight-drop device was used to deliver a standard traumatic impact to rats. Western blot, RT-PCR and ELISA were used to analyze the expression of Nogo-A and IL-1β. Nogo-A antisense, and an irrelevant control oligonucleotide was intracerebroventricularly infused. We also performed H & E staining and luxol fast blue staining to evaluate the neuronal damage and demyelination resulting from TBI and various treatments.Results: Based on RT-PCR and western blot analyses, the expression of Nogo-A was found to be significantly upregulated in the hippocampus beginning eight hours after TBI. In addition, TBI caused an apparent elevation in IL-1β levels and severe neuronal damage and demyelination in the tested animals. All of the TBI-associated molecular and cellular consequences could be effectively reversed by treating the animals with the anti-inflammatory drug indomethacin. More importantly, the TBI-associated stimulation in the levels of both Nogo-A and IL-1β could be effectively inhibited by a specific Nogo-A antisense oligonucleotide.Conclusions: Our findings suggest that the suppression of Nogo-A expression appears to be an early response conferred by indomethacin, which then leads to decreases in the levels of IL-1β and TBI-induced neuron damage.

Original languageEnglish
Article number121
JournalJournal of Neuroinflammation
Publication statusPublished - 2012 Jun 7



  • IL-1β
  • Inflammation
  • Nogo-A
  • Traumatic brain injury

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Cite this