Abstract
Different models retrieve the documents based on different approaches of extracting the underlying content. Different levels of indexing features also offer different functionalities and discriminabilities when retrieving the documents. In this paper, we present results for Chinese spoken document retrieval with hybrid models to integrate the knowledge obtainable from three basic retrieval models, namely, the standard vector space model (VSM), the hidden Markov model (HMM), and the latent semantic indexing (LSI) model. The characteristics of retrieval performance using both word-level and syllable-level indexing features were extensively explored. In addition, a data-driven approach to derive variable-length indexing features is also presented. Very satisfactory performance can be achieved with these data-driven features while retaining very compact feature set size. Experiments showed that this approach has the potential to identify domain-specific terminologies or newlygenerated phrases. It is therefore very useful not only in Chinese document retrieval, but also in detecting out of vocabulary (OOV) words in Chinese. Very encouraging results were obtained when the hybrid models were used with the datadriven indexing features as well.
Original language | English |
---|---|
Pages | 1985-1988 |
Number of pages | 4 |
Publication status | Published - 2002 |
Externally published | Yes |
Event | 7th International Conference on Spoken Language Processing, ICSLP 2002 - Denver, United States Duration: 2002 Sept 16 → 2002 Sept 20 |
Other
Other | 7th International Conference on Spoken Language Processing, ICSLP 2002 |
---|---|
Country/Territory | United States |
City | Denver |
Period | 2002/09/16 → 2002/09/20 |
ASJC Scopus subject areas
- Language and Linguistics
- Linguistics and Language