TY - GEN
T1 - Impact of node heterogeneity in ZigBee mesh network routing
AU - Liang, Nia Chiang
AU - Chen, Ping Chieh
AU - Sun, Tony
AU - Yang, Guang
AU - Chen, Ling Jyh
AU - Gerla, Mario
PY - 2006
Y1 - 2006
N2 - Based on the IEEE 802.15.4 LR-WPAN standard, the ZigBee standard has been proposed to interconnect simple, low rate, and battery powered wireless devices. The deployment of ZigBee networks is expected to facilitate numerous applications, such as home-appliance networks, home healthcare, medical monitoring, consumer electronics, and environmental sensors. An effective routing scheme in a ZigBee network is particularly important in that it is the key to achieve resource (e.g., bandwidth and energy) efficiency in ZigBee networks. Routing in a ZigBee network is not exactly the same as in a MANET. In particular, while Full Function Devices (FFD) can serve as network coordinators or network routers, Reduced Function Devices (RFD) can only associate and communicate with FFDs in a ZigBee network. Therefore, different from traditional MANET routing algorithms, which only take into account node mobility to figure out a best route to a given destination, node heterogeneity plays an important role in ZigBee network routing. In this paper, we perform extensive evaluation, using NS-2 simulator, to study the impact of node heterogeneity on ZigBee mesh network routing. The results show that the ZigBee mesh routing algorithm exhibits significant performance difference when the network is highly heterogenous. We also reveal that the node type and the role of the node plays a critical role in deciding routing performances.
AB - Based on the IEEE 802.15.4 LR-WPAN standard, the ZigBee standard has been proposed to interconnect simple, low rate, and battery powered wireless devices. The deployment of ZigBee networks is expected to facilitate numerous applications, such as home-appliance networks, home healthcare, medical monitoring, consumer electronics, and environmental sensors. An effective routing scheme in a ZigBee network is particularly important in that it is the key to achieve resource (e.g., bandwidth and energy) efficiency in ZigBee networks. Routing in a ZigBee network is not exactly the same as in a MANET. In particular, while Full Function Devices (FFD) can serve as network coordinators or network routers, Reduced Function Devices (RFD) can only associate and communicate with FFDs in a ZigBee network. Therefore, different from traditional MANET routing algorithms, which only take into account node mobility to figure out a best route to a given destination, node heterogeneity plays an important role in ZigBee network routing. In this paper, we perform extensive evaluation, using NS-2 simulator, to study the impact of node heterogeneity on ZigBee mesh network routing. The results show that the ZigBee mesh routing algorithm exhibits significant performance difference when the network is highly heterogenous. We also reveal that the node type and the role of the node plays a critical role in deciding routing performances.
UR - http://www.scopus.com/inward/record.url?scp=34548137010&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548137010&partnerID=8YFLogxK
U2 - 10.1109/ICSMC.2006.384380
DO - 10.1109/ICSMC.2006.384380
M3 - Conference contribution
AN - SCOPUS:34548137010
SN - 1424401003
SN - 9781424401000
T3 - Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
SP - 187
EP - 191
BT - 2006 IEEE International Conference on Systems, Man and Cybernetics
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2006 IEEE International Conference on Systems, Man and Cybernetics
Y2 - 8 October 2006 through 11 October 2006
ER -