Abstract
This study quantified the strength of the relationship between the percentage of heart rate reserve (%HRR) and two acceleration-based intensity metrics (AIMs) at three sensor-positions during three sport types (running, basketball, and badminton) under three intensity conditions (locomotion speeds). Fourteen participants (age: 24.9 ± 2.4 years) wore a chest strap HR monitor and placed three accelerometers at the left wrist (non-dominant), trunk, and right shank, respectively. The %HRR and two different AIMs (Player Load per minute [PL/min] and mean amplitude deviation [MAD]) during exercise were calculated. During running, both AIMs at the shank and PL at the wrist had strong correlations (r = 0.777–0.778) with %HRR; while other combinations were negligible to moderate (r = 0.065–0.451). For basketball, both AIMs at the shank had stronger correlations (r = 0.604–0.628) with %HRR than at wrist (r = 0.536–0.603) and trunk (r = 0.403–0.463) with %HRR. During badminton exercise, both AIMs at shank had stronger correlations (r = 0.782–0.793) with %HRR than those at wrist (r = 0.587–0.621) and MAD at trunk (r = 0.608) and trunk (r = 0.314). Wearing the sensor on the shank is an ideal position for both AIMs to monitor external intensity in running, basketball, and badminton, while the wrist and using PL-derived AIM seems to be the second ideal combination.
Original language | English |
---|---|
Article number | 2583 |
Journal | Sensors |
Volume | 22 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2022 Apr 1 |
Keywords
- acceleration
- racquet sports
- running
- team sports
- wearable electronic devices
ASJC Scopus subject areas
- Analytical Chemistry
- Information Systems
- Instrumentation
- Atomic and Molecular Physics, and Optics
- Electrical and Electronic Engineering
- Biochemistry