I-vector based language modeling for spoken document retrieval

Kuan Yu Chen, Hung Shin Lee, Hsin Min Wang, Berlin Chen, Hsin His Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Citations (Scopus)

Abstract

Since more and more multimedia data associated with spoken documents have been made available to the public, spoken document retrieval (SDR) has become an important research subject in the past two decades. The i-vector based framework has been proposed and introduced to language identification (LID) and speaker recognition (SR) tasks recently. The major contribution of the i-vector framework is to reduce a series of acoustic feature vectors of a speech utterance to a low-dimensional vector representation, and then numbers of well-developed postprocessing techniques (such as probabilistic linear discriminative analysis, PLDA) can be readily and effectively used. However, to our best knowledge, there is no research up to date on applying the i-vector framework for SDR or information retrieval (IR). In this paper, we make a step forward to formulate an i-vector based language modeling (IVLM) framework for SDR. Furthermore, we evaluate the proposed IVLM framework with both inductive and transductive learning strategies. We also exploit multi-levels of index features, including word- and subword-level units, in concert with the proposed framework. The results of SDR experiments conducted on the TDT-2 (Topic Detection and Tracking) collection demonstrate the performance merits of our proposed framework when compared to several existing approaches.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7083-7087
Number of pages5
ISBN (Print)9781479928927
DOIs
Publication statusPublished - 2014
Event2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
Duration: 2014 May 42014 May 9

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Country/TerritoryItaly
CityFlorence
Period2014/05/042014/05/09

Keywords

  • Spoken document retrieval
  • i-vector
  • inductive
  • language modeling
  • transductive

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'I-vector based language modeling for spoken document retrieval'. Together they form a unique fingerprint.

Cite this