Abstract
This study presents a novel approach to enhancing MIL-88B(Fe) for H₂S sensing by incorporating aniline trimer (ACAT). The successful synthesis and comprehensive characterization of ACAT, MIL-88B(Fe), and their composite, ACAT-MIL-88B(Fe), are detailed. The ACAT-MIL-88B(Fe) sensor demonstrates significantly superior performance, with a sensitivity increase to 643.5 % at 9–10 ppm H₂S and a rapid response time of 288 seconds. It maintains high sensitivity (450 % response) even at 90 % relative humidity and shows excellent selectivity for H₂S over other gases. Stability tests confirm over 600 % responsiveness over 16 days. Density Functional Theory (DFT) calculations validate that H₂S adsorption is most stable at the Fe site of MIL-88B(Fe), with ACAT enhancing this interaction. This innovative sensor holds promise for highly sensitive, selective, and stable H₂S detection in industrial applications.
Original language | English |
---|---|
Article number | 136659 |
Journal | Sensors and Actuators B: Chemical |
Volume | 422 |
DOIs | |
Publication status | Published - 2025 Jan 1 |
Keywords
- Adsorption energy
- Aniline trimer
- Density functional theory
- HS gas sensors
- Metal organic framework
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry