TY - JOUR
T1 - Highly temperature insensitive, low threshold-current density (λ = 8.7-8.8 μ m) quantum cascade lasers
AU - Kirch, J. D.
AU - Chang, C. C.
AU - Boyle, C.
AU - Mawst, L. J.
AU - Lindberg, D.
AU - Earles, T.
AU - Botez, D.
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/4/13
Y1 - 2015/4/13
N2 - By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7-8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T0, as high as 283 K and slope-efficiency characteristic temperature coefficients, T1, as high as 561 K, over the 20-60 °C heatsink-temperature range. These high T0 and T1 values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8-9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm2; values comparable to those for 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%-40% higher than for same-geometry conventional 8-9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.
AB - By stepwise tapering, both the barrier heights and quantum-well depths in the active regions of 8.7-8.8 μm-emitting quantum-cascade-laser (QCL) structures, virtually complete carrier-leakage suppression is achieved. Such step-taper active-region-type QCLs possess, for 3 mm-long devices with high-reflectivity-coated back facets, threshold-current characteristic temperature coefficients, T0, as high as 283 K and slope-efficiency characteristic temperature coefficients, T1, as high as 561 K, over the 20-60 °C heatsink-temperature range. These high T0 and T1 values reflect at least a factor of four reduction in carrier-leakage current compared to conventional 8-9 μm-emitting QCLs. Room temperature, pulsed, threshold-current densities are 1.58 kA/cm2; values comparable to those for 35-period conventional QCLs of similar injector-region doping level. Superlinear behavior of the light-current curves is shown to be the result of the onset of resonant extraction from the lower laser level at a drive level of ∼1.3× threshold. Maximum room-temperature slope efficiencies are 1.23 W/A; that is, slope efficiency per period values of 35 mW/A, which are 37%-40% higher than for same-geometry conventional 8-9 μm-emitting QCLs. Since the waveguide-loss coefficients are very similar, we estimate that the internal differential efficiency is at least 30% higher than in conventional QCLs. Such high internal differential efficiency values reflect the combined effect of nearly complete carrier-leakage suppression and high differential efficiency of the laser transition (∼90%), due to resonant extraction from the lower laser level.
UR - http://www.scopus.com/inward/record.url?scp=84928468753&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84928468753&partnerID=8YFLogxK
U2 - 10.1063/1.4917499
DO - 10.1063/1.4917499
M3 - Article
AN - SCOPUS:84928468753
SN - 0003-6951
VL - 106
JO - Applied Physics Letters
JF - Applied Physics Letters
IS - 15
M1 - 151106
ER -