Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm 2

Kuan Min Huang, Ying Qian Wong, Man Chun Lin, Chao Hsuan Chen, Chung Hung Liao, Jen Yueh Chen, Yuan Han Huang, Yu Fan Chang, Pei Ting Tsai, Szu Han Chen, Ching Ting Liao, Yu Cih Lee, Ling Hong, Chih Yu Chang*, Hsin Fei Meng, Ziyi Ge, Hsiao Wen Zan, Sheng Fu Horng, Yu Chiang Chao, Hin Yong Wong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

In this study, an efficient and stable large-area blade-coated organic solar cell (OSC) module with an active area of 216 cm 2 (16 elementary cells connected in series) is demonstrated by combining appropriate thermal annealing treatment with the use of 4,4′-(((methyl(4-sulphonatobutyl)ammonio)bis(propane-3,1-diyl))bis(dimethyl-ammoniumdiyl))bis-(butane-1-sulfonate) (MSAPBS) as the cathode interfacial layer. For the opaque device using poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PBDTTT-EFT (PTB7-Th)):[6,6]-phenyl C 71 -butyric acid methyl ester (PC 71 BM) blend film as the active layer, the power conversion efficiency (PCE) of 5.6% is achieved under AM 1.5G solar light illumination. Very encouragingly, our strategy can be applicable for semitransparent OSCs, and a remarkable PCE up to 4.5% is observed. To the best of our knowledge, the PCE of 5.6% for opaque device and 4.5% for semitransparent device represent the highest PCE ever reported for OSCs with the active area exceeding 100 cm 2 . The devices also show an impressive stability under outdoor environment, where the efficiency decay is less than 30% for 60 days. Our findings can pave the way toward the development of organic solar cell modules with high performance and long-term stability.

Original languageEnglish
Pages (from-to)264-274
Number of pages11
JournalProgress in Photovoltaics: Research and Applications
Volume27
Issue number3
DOIs
Publication statusPublished - 2019 Mar

Keywords

  • interfacial layer
  • large area
  • organic solar cell
  • solution-processable
  • stability

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm 2'. Together they form a unique fingerprint.

Cite this