Abstract
Narrowband green phosphors with high quantum efficiency are required for backlighting white light-emitting diode (WLED) devices. Materials from the A[Li3SiO4]4:Eu2+ family have recently been proposed as having superior properties to industry-standard β-SiAlON green phosphors. Here, we show that a cheap, easily synthesized host NaK2Li[Li3SiO4]4 (NKLLSO) doped with a mixture of Eu2+ and Eu3+ is an outstanding narrowband green phosphor, with an external quantum efficiency of 51% and superb thermal stability (97.1% of room-temperature performance at 150 °C). Structural studies reveal that green emission occurs from two Eu2+ sites, while Eu3+ introduces a high concentration of vacancies that may suppress quenching from energy transfer between Eu2+ sites. A WLED package constructed using our NKLLSO phosphor shows extremely high color vividness, competitive with a β-SiAlON comparator. This work will stimulate further research on efficient green phosphors for practical WLED devices.
Original language | English |
---|---|
Pages (from-to) | 1893-1899 |
Number of pages | 7 |
Journal | Chemistry of Materials |
Volume | 33 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2021 Mar 9 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Materials Chemistry