Heterogeneous nuclear ribonucleoprotein M associates with mTORC2 and regulates muscle differentiation

Wei Yen Chen, Chia Lung Lin, Jen Hua Chuang, Fu Yu Chiu, Yun Ya Sun, Mei Chih Liang, Yenshou Lin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Mammalian target of rapamycin (mTOR) plays a range of crucial roles in cell survival, growth, proliferation, metabolism, and morphology. However, mTOR forms two distinct complexes, mTOR complex 1 and mTOR complex 2 (mTORC1 and mTORC2), via association with a series of different components; this allows the complexes to execute their wide range of functions. This study explores further the composition of the mTORC2 complex. Utilizing Rictor knock-out cells, immunoprecipitation and mass spectrometry, a novel Rictor associated protein, heterogeneous nuclear ribonucleoprotein M (hnRNP M), was identified. The association between hnRNP M and Rictor was verified using recombinant and endogenous protein and the binding site was found to be within aa 1∼532 of hnRNP M. The presence of hnRNP M significantly affects phosphorylation of SGK1 S422, but not of Akt S473, PKCα S657 and PKCζ T560. Furthermore, hnRNP M also plays a critical role in muscle differentiation because knock-down of either hnRNP M or Rictor in C2C12 myoblasts reduced differentiation. This decrease is able to be rescued by overexpression SGK S422D in hnRNP M knockdown C2C12 myoblasts. Taken together, we have identified a novel Rictor/mTOR binding molecule, hnRNP M, that allows mTORC2 signaling to phosphorylate SGK1 thus regulating muscle differentiation.

Original languageEnglish
Article number41159
JournalScientific reports
Volume7
DOIs
Publication statusPublished - 2017 Jan 20

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Heterogeneous nuclear ribonucleoprotein M associates with mTORC2 and regulates muscle differentiation'. Together they form a unique fingerprint.

Cite this