TY - JOUR
T1 - GnRH mRNA levels in male three-spined sticklebacks, Gasterosteus aculeatus, under different reproductive conditions
AU - Shao, Yi Ta
AU - Tseng, Yung Che
AU - Chang, Chia Hao
AU - Yan, Hong Young
AU - Hwang, Pung Pung
AU - Borg, Bertil
PY - 2015/2/1
Y1 - 2015/2/1
N2 - In vertebrates, reproduction is regulated by the brain-pituitary-gonad (BPG) axis, where the gonadotropin-releasing hormone (GnRH) is one of the key components. However, very little is known about the possible role of GnRH in the environmental and feedback control of fish reproduction. To investigate this, full-length gnrh2 (chicken GnRH II) and gnrh3 (salmon GnRH) sequences of male three-spined sticklebacks ( Gasterosteus aculeatus), which are clustered with the taxa of the same GnRH type as other Euteleostei, were cloned and annotated. gnrh1 is absent in this species. The mRNA levels of gnrh2 and gnrh3 in the sticklebacks' brain were measured under breeding and post-breeding conditions as well as in castrated and sham-operated breeding fish and castrated/sham-operated fish kept under long-day (LD 16:8) and short-day (LD 8:16) conditions. Fully breeding males had considerably higher mRNA levels of gnrh2 and gnrh3 in the thalamus ( Th) and in the telencephalon and preoptic area ( T+POA), respectively, than post-breeding males. Sham-operated breeding males have higher gnrh3 mRNA levels than the corresponding castrated males. Moreover, higher gnrh2 mRNA levels in the Th and higher gnrh3 mRNA levels in the T+POA and hypothalamus ( HypTh) were also found in long-day sham-operated males than in sham-operated fish kept under an inhibitory short day photoperiod. Nevertheless, gnrh2 and gnrh3 mRNA levels were not up-regulated in castrated males kept under long-day photoperiod, which suggests that positive feedbacks on the brain-pituitary-gonad axis are necessary for this response.
AB - In vertebrates, reproduction is regulated by the brain-pituitary-gonad (BPG) axis, where the gonadotropin-releasing hormone (GnRH) is one of the key components. However, very little is known about the possible role of GnRH in the environmental and feedback control of fish reproduction. To investigate this, full-length gnrh2 (chicken GnRH II) and gnrh3 (salmon GnRH) sequences of male three-spined sticklebacks ( Gasterosteus aculeatus), which are clustered with the taxa of the same GnRH type as other Euteleostei, were cloned and annotated. gnrh1 is absent in this species. The mRNA levels of gnrh2 and gnrh3 in the sticklebacks' brain were measured under breeding and post-breeding conditions as well as in castrated and sham-operated breeding fish and castrated/sham-operated fish kept under long-day (LD 16:8) and short-day (LD 8:16) conditions. Fully breeding males had considerably higher mRNA levels of gnrh2 and gnrh3 in the thalamus ( Th) and in the telencephalon and preoptic area ( T+POA), respectively, than post-breeding males. Sham-operated breeding males have higher gnrh3 mRNA levels than the corresponding castrated males. Moreover, higher gnrh2 mRNA levels in the Th and higher gnrh3 mRNA levels in the T+POA and hypothalamus ( HypTh) were also found in long-day sham-operated males than in sham-operated fish kept under an inhibitory short day photoperiod. Nevertheless, gnrh2 and gnrh3 mRNA levels were not up-regulated in castrated males kept under long-day photoperiod, which suggests that positive feedbacks on the brain-pituitary-gonad axis are necessary for this response.
KW - Feedback
KW - GnRH2
KW - GnRH3
KW - Gonadectomy
KW - MRNA
KW - Photoperiod
KW - Stickleback
UR - http://www.scopus.com/inward/record.url?scp=84911945752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84911945752&partnerID=8YFLogxK
U2 - 10.1016/j.cbpa.2014.10.008
DO - 10.1016/j.cbpa.2014.10.008
M3 - Article
AN - SCOPUS:84911945752
VL - 180
SP - 6
EP - 17
JO - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
JF - Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology
SN - 1095-6433
ER -