Abstract
We consider the properties of a generalized perceptron learning network, taking into account the decay or the gain of the weight vector during the training stages. A mathematical proof is given that shows the conditional convergence of the learning algorithm. The analytical result indicates that the upper bound of the training steps is dependent on the gain (or decay) factor. A sufficient condition of exposure time for convergence of a photorefractive perceptron network is derived. We also describe a modified learning algorithm that provides a solution to the problem of weight vector decay in an optical perceptron caused by hologram erasure. Both analytical and simulation results are presented and discussed.
Original language | English |
---|---|
Pages (from-to) | 1619-1624 |
Number of pages | 6 |
Journal | Journal of the Optical Society of America B: Optical Physics |
Volume | 11 |
Issue number | 9 |
DOIs | |
Publication status | Published - 1994 Sept |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Atomic and Molecular Physics, and Optics