TY - JOUR
T1 - General non-linear fragmentation with discontinuous Galerkin methods
AU - Lombart, Maxime
AU - Bréhier, Charles Edouard
AU - Hutchison, Mark
AU - Lee, Yueh Ning
N1 - Publisher Copyright:
© 2024 The Author(s).
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation algorithms employed in astrophysics are dominated by the numerical overdiffusion problem – particularly in three-dimensional hydrodynamic simulations where the discrete resolution of the mass-density distribution tends to be highly limited. With this in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy of 0.1–1 per cent is reached with 20 dust bins spanning a mass range of 9 orders of magnitude.
AB - Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation algorithms employed in astrophysics are dominated by the numerical overdiffusion problem – particularly in three-dimensional hydrodynamic simulations where the discrete resolution of the mass-density distribution tends to be highly limited. With this in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy of 0.1–1 per cent is reached with 20 dust bins spanning a mass range of 9 orders of magnitude.
KW - methods: numerical – (ISM:) dust, extinction
UR - http://www.scopus.com/inward/record.url?scp=85204037454&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85204037454&partnerID=8YFLogxK
U2 - 10.1093/mnras/stae2039
DO - 10.1093/mnras/stae2039
M3 - Article
AN - SCOPUS:85204037454
SN - 0035-8711
VL - 533
SP - 4410
EP - 4434
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -