TY - JOUR
T1 - Functional properties of LRRK2 mutations in Taiwanese Parkinson disease
AU - Chang, Kuo Hsuan
AU - Chen, Chiung Mei
AU - Lin, Chih Hsin
AU - Chang, Wen Teng
AU - Jiang, Pei Ru
AU - Hsiao, Ya Chin
AU - Wu, Yih Ru
AU - Lee-Chen, Guey Jen
N1 - Publisher Copyright:
© 2016
PY - 2017/3/1
Y1 - 2017/3/1
N2 - Background/purpose Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations—p.R767H, p.S885N, and p.R1441H—in Taiwanese patients with Parkinson disease. Methods We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. Results In 293 cells, overexpressed p.R1441H—but not p.R767H, p.S885N, or p.G2019—increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. Conclusion Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7.
AB - Background/purpose Leucine-rich repeat kinase 2 (LRRK2) is a large protein encoding multiple functional domains. Mutations within different LRRK2 domains have been considered to be involved in the development of Parkinson disease by different mechanisms. Our previous study found three LRRK2 mutations—p.R767H, p.S885N, and p.R1441H—in Taiwanese patients with Parkinson disease. Methods We evaluated the functional properties of LRRK2 p.R767H, p.S885N, and p.R1441H mutations by overexpressing them in human embryonic kidney 293 and neuroblastoma SK-N-SH cells. The common p.G2019S mutation in the kinase domain was included for comparison. Results In 293 cells, overexpressed p.R1441H—but not p.R767H, p.S885N, or p.G2019—increased GTP binding affinity to prolong the active state. Overexpressed p.R1441H and p.G2019S generated inclusions in 293 cells. In SK-N-SH cells, the α-synuclein was coexpressed with wild type as well as mutated p.R767H, p.S885N, p.R1441H, and p.G2019 LRRK2 proteins. Part of the perinuclear inclusions formed by p.R1441H and p.G2019S were colocalized with α-synuclein. Additionally, p.S885N and p.R1441H mutations caused reduced interaction between LRRK2 and ARHGEF7, a putative guanine nucleotide exchange factor for LRRK2, whereas this interaction was well preserved in p.R767H and p.G2019S mutations. Conclusion Our study suggests that p.R1441H protein facilitates the formation of intracellular inclusions, compromises GTP hydrolysis by increasing its affinity for GTP, and reduces its interaction with ARHGEF7.
KW - ARHGEF7
KW - GTPase
KW - LRRK2
KW - Parkinson disease
KW - p.R1441H mutation
UR - http://www.scopus.com/inward/record.url?scp=84979633600&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979633600&partnerID=8YFLogxK
U2 - 10.1016/j.jfma.2016.04.009
DO - 10.1016/j.jfma.2016.04.009
M3 - Article
C2 - 27423549
AN - SCOPUS:84979633600
SN - 0929-6646
VL - 116
SP - 197
EP - 204
JO - Journal of the Formosan Medical Association
JF - Journal of the Formosan Medical Association
IS - 3
ER -