TY - JOUR
T1 - Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex
T2 - Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China
AU - Shellnutt, J. G.
AU - Jahn, B. M.
N1 - Funding Information:
We thank Dr. R.W. Carlson for handing of the manuscript and two anonymous reviewers for their constructive comments. We acknowledge Fu Lung Lin, Chiyi Lee, Masako Usuki and Kuang Cheng Yeh for their laboratory assistance at Academia Sincia. This work was supported by Academia Sinica through the post-doctoral fellowship of JGS. BMJ acknowledges the support of the National Science Council through NSC 97-2116-M-001-011 and NSC 98-2116-M-001-009 .
PY - 2010/1/31
Y1 - 2010/1/31
N2 - The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe-Ti oxide deposits. The Fe-Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe-Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu* = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu* = 0.75 to 0.83), granites and trachytes (Eu/Eu* = 0.55-0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe-Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe-Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite-gabbro complexes in the region likely formed in a similar manner.
AB - The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe-Ti oxide deposits. The Fe-Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe-Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu* = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu* = 0.75 to 0.83), granites and trachytes (Eu/Eu* = 0.55-0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe-Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe-Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite-gabbro complexes in the region likely formed in a similar manner.
KW - A-type granite
KW - Emeishan large igneous province
KW - Fe-Ti oxide deposit
KW - MELTS
KW - Permian
KW - layered gabbro
KW - trachyte
UR - http://www.scopus.com/inward/record.url?scp=73449118885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73449118885&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2009.11.044
DO - 10.1016/j.epsl.2009.11.044
M3 - Article
AN - SCOPUS:73449118885
SN - 0012-821X
VL - 289
SP - 509
EP - 519
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
IS - 3-4
ER -