Flower-like ZnCo2O4 nanowires: Toward a high-performance anode material for Li-ion batteries

Saad Gomaa Mohamed, Tai Feng Hung, Chih Jung Chen, Chih Kai Chen, Shu-Fen Hu, Ru Shi Liu, Kuang Chang Wang, Xue Kun Xing, Hsin Mao Liu, Ai Sen Liu, Min Hsun Hsieh, Biing Jye Lee

Research output: Contribution to journalArticlepeer-review

75 Citations (Scopus)

Abstract

Rising interest in lightweight, thin, and flexible energy storage devices has led to numerous studies that aim to fulfill the special needs of next-generation, high-performance flexible electronics. In this study, flower-like ZnCo2O4 nanowires are fabricated by a facile hydrothermal method followed by heat treatment in air at 400 °C. The structures and morphologies of as-prepared ZnCo2O4 nanowires are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The data indicate that the as-synthesized flower-like ZnCo2O4 nanowires are approximately 2.5 μm in length and range from 50 nm to 150 nm in diameter. The as-prepared flower-like ZnCo2O4 nanowire products are evaluated as anode materials for lithium-ion battery application. The special structural features of ZnCo2O4 nanowires, including high coating uniformity, high coating density, and porous architecture, exert a significant effect on the electrochemical performance of the nanowires. The discharge capacity of ZnCo2O4 flower-like nanowires can reach first discharge capacity at 1430 mA h g-1 to ∼900 mA h g-1 after 50 discharge-charge cycles at a current density of 200 mA g-1, indicating its potential applications for next-generation, high-performance flexible electronics. High battery performance is mainly attributed to the dense and porous nanowire structures composed of interconnected ZnCo 2O4 nanoparticles, which provide good electrolyte diffusion and large electrode-electrolyte contact area while reducing volume change during the charge-discharge process. The fabricated electrode can be used to light up commercial light emitting diodes.

Original languageEnglish
Pages (from-to)20143-20149
Number of pages7
JournalRSC Advances
Volume3
Issue number43
DOIs
Publication statusPublished - 2013 Nov 21

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Flower-like ZnCo<sub>2</sub>O<sub>4</sub> nanowires: Toward a high-performance anode material for Li-ion batteries'. Together they form a unique fingerprint.

Cite this