TY - JOUR
T1 - First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole
AU - The Event Horizon Telescope Collaboration
AU - Akiyama, Kazunori
AU - Alberdi, Antxon
AU - Alef, Walter
AU - Algaba, Juan Carlos
AU - Anantua, Richard
AU - Asada, Keiichi
AU - Azulay, Rebecca
AU - Bach, Uwe
AU - Baczko, Anne Kathrin
AU - Ball, David
AU - Baloković, Mislav
AU - Barrett, John
AU - Bauböck, Michi
AU - Benson, Bradford A.
AU - Bintley, Dan
AU - Blackburn, Lindy
AU - Blundell, Raymond
AU - Bouman, Katherine L.
AU - Bower, Geoffrey C.
AU - Boyce, Hope
AU - Bremer, Michael
AU - Brinkerink, Christiaan D.
AU - Brissenden, Roger
AU - Britzen, Silke
AU - Broderick, Avery E.
AU - Broguiere, Dominique
AU - Bronzwaer, Thomas
AU - Bustamante, Sandra
AU - Byun, Do Young
AU - Carlstrom, John E.
AU - Ceccobello, Chiara
AU - Chael, Andrew
AU - Chan, Chi Kwan
AU - Chatterjee, Koushik
AU - Chatterjee, Shami
AU - Chen, Ming Tang
AU - Chen, Yongjun
AU - Cheng, Xiaopeng
AU - Cho, Ilje
AU - Christian, Pierre
AU - Conroy, Nicholas S.
AU - Conway, John E.
AU - Cordes, James M.
AU - Crawford, Thomas M.
AU - Crew, Geoffrey B.
AU - Cruz-Osorio, Alejandro
AU - Cui, Yuzhu
AU - Davelaar, Jordy
AU - De Laurentis, Mariafelicia
AU - Pu, Hung Yi
N1 - Publisher Copyright:
© 2022. The Author(s). Published by the American Astronomical Society
PY - 2022/5/1
Y1 - 2022/5/1
N2 - In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 μm, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i ≤ 30°. They have accretion rate (5.2-9.5) × 10-9 M☉ yr-1, bolometric luminosity (6.8-9.2) × 1035 erg s-1, and outflow power (1.3-4.8) × 1038 erg s-1. We also find that all models with i 70° fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 μm flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.
AB - In this paper we provide a first physical interpretation for the Event Horizon Telescope's (EHT) 2017 observations of Sgr A*. Our main approach is to compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 μm, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i ≤ 30°. They have accretion rate (5.2-9.5) × 10-9 M☉ yr-1, bolometric luminosity (6.8-9.2) × 1035 erg s-1, and outflow power (1.3-4.8) × 1038 erg s-1. We also find that all models with i 70° fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 μm flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations.
UR - http://www.scopus.com/inward/record.url?scp=85131935917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85131935917&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ac6672
DO - 10.3847/2041-8213/ac6672
M3 - Article
AN - SCOPUS:85131935917
SN - 2041-8205
VL - 930
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
IS - 2
M1 - L16
ER -