Fe(phen)32+-modified zeolite particles and their energetic studies

Yea Wenn Liou, Chong Mou Wang

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Chemically modified zeolite Y (NaY) particles and their resulting modified electrodes were prepared with acridinium (AcH+), iron(II) and 1,10-phenanthroline (phen) for energetic studies. According to diffuse reflectance absorption spectroscopy and cyclic voltammetry, AcH+ and Fe(phen)32+ were successfully entrapped in the zeolite particles. Transient emission spectra measurements showed that the lifetime of AcH+* in the zeolite particles (to 35 ns; λex 365 nm; λem 500 nm) was greatly reduced upon incorporating Fe(phen)32+ and Fe2+. The fast decay of AcH+*(NaY) suggested that a reductive quench was likely to take place in the zeolite particle. Probably due to a size-exclusion effect, the bulky electron donor, N,N-diethyl-2-methy 1-1,4-phenylene diamine (DEPD), revealed a difficulty in reaching the photosensitizer, AcH+, inside the zeolite particle. As a consequence, the insignificant photocurrent for the oxidation of DEPD was from the NaY|AcH+ electrode. However, if Fe2+ and Fe(phen)32+ were incorporated, the photocurrent would become more significant. Closer examinations, in addition, showed that the photooxidaton of DEPD occurred more rapidly on the NaY|AcH +|Fe(phen)32+ electrode, compared to the NaY|AcH+|Fe2+ electrode. This difference apparently results from a greater gap in energetics between DEPD and Fe(phen) 33+(NaY) than that between DEPD and Fe 3+(NaY). Due to this effect, a greater amount of indophenol blue, derived from the coupling reaction of the oxidized DEPD with 1-naphthol, was formed and deposited on the NaY|AcH+|Fe(phen) 32+ modified electrode. Thanks to this photo-induced charge-transfer reaction, the NaY|AcH+|Fe(phen)3 2+ particle showed an application potential in image recording.

Original languageEnglish
Pages (from-to)51-56
Number of pages6
JournalJournal of the Chinese Chemical Society
Volume49
Issue number1
DOIs
Publication statusPublished - 2002 Jan 1

Fingerprint

Zeolites
Phenanthrolines
Electrodes
Photocurrents
Indophenol
Image recording
Photosensitizing Agents
Diamines
Absorption spectroscopy
Cyclic voltammetry
Charge transfer
Oxidation
Electrons

Keywords

  • Acridinium
  • Fe(II) 1,10-phenanthroline complex
  • Photo-induced electron transfer
  • Zeolite-modified electrode

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Fe(phen)32+-modified zeolite particles and their energetic studies. / Liou, Yea Wenn; Wang, Chong Mou.

In: Journal of the Chinese Chemical Society, Vol. 49, No. 1, 01.01.2002, p. 51-56.

Research output: Contribution to journalArticle

@article{dc7a93770dd04572aa94b1c62184fa6e,
title = "Fe(phen)32+-modified zeolite particles and their energetic studies",
abstract = "Chemically modified zeolite Y (NaY) particles and their resulting modified electrodes were prepared with acridinium (AcH+), iron(II) and 1,10-phenanthroline (phen) for energetic studies. According to diffuse reflectance absorption spectroscopy and cyclic voltammetry, AcH+ and Fe(phen)32+ were successfully entrapped in the zeolite particles. Transient emission spectra measurements showed that the lifetime of AcH+* in the zeolite particles (to 35 ns; λex 365 nm; λem 500 nm) was greatly reduced upon incorporating Fe(phen)32+ and Fe2+. The fast decay of AcH+*(NaY) suggested that a reductive quench was likely to take place in the zeolite particle. Probably due to a size-exclusion effect, the bulky electron donor, N,N-diethyl-2-methy 1-1,4-phenylene diamine (DEPD), revealed a difficulty in reaching the photosensitizer, AcH+, inside the zeolite particle. As a consequence, the insignificant photocurrent for the oxidation of DEPD was from the NaY|AcH+ electrode. However, if Fe2+ and Fe(phen)32+ were incorporated, the photocurrent would become more significant. Closer examinations, in addition, showed that the photooxidaton of DEPD occurred more rapidly on the NaY|AcH +|Fe(phen)32+ electrode, compared to the NaY|AcH+|Fe2+ electrode. This difference apparently results from a greater gap in energetics between DEPD and Fe(phen) 33+(NaY) than that between DEPD and Fe 3+(NaY). Due to this effect, a greater amount of indophenol blue, derived from the coupling reaction of the oxidized DEPD with 1-naphthol, was formed and deposited on the NaY|AcH+|Fe(phen) 32+ modified electrode. Thanks to this photo-induced charge-transfer reaction, the NaY|AcH+|Fe(phen)3 2+ particle showed an application potential in image recording.",
keywords = "Acridinium, Fe(II) 1,10-phenanthroline complex, Photo-induced electron transfer, Zeolite-modified electrode",
author = "Liou, {Yea Wenn} and Wang, {Chong Mou}",
year = "2002",
month = "1",
day = "1",
doi = "10.1002/jccs.200200009",
language = "English",
volume = "49",
pages = "51--56",
journal = "Journal of the Chinese Chemical Society",
issn = "0009-4536",
publisher = "Chinese Chemical Society",
number = "1",

}

TY - JOUR

T1 - Fe(phen)32+-modified zeolite particles and their energetic studies

AU - Liou, Yea Wenn

AU - Wang, Chong Mou

PY - 2002/1/1

Y1 - 2002/1/1

N2 - Chemically modified zeolite Y (NaY) particles and their resulting modified electrodes were prepared with acridinium (AcH+), iron(II) and 1,10-phenanthroline (phen) for energetic studies. According to diffuse reflectance absorption spectroscopy and cyclic voltammetry, AcH+ and Fe(phen)32+ were successfully entrapped in the zeolite particles. Transient emission spectra measurements showed that the lifetime of AcH+* in the zeolite particles (to 35 ns; λex 365 nm; λem 500 nm) was greatly reduced upon incorporating Fe(phen)32+ and Fe2+. The fast decay of AcH+*(NaY) suggested that a reductive quench was likely to take place in the zeolite particle. Probably due to a size-exclusion effect, the bulky electron donor, N,N-diethyl-2-methy 1-1,4-phenylene diamine (DEPD), revealed a difficulty in reaching the photosensitizer, AcH+, inside the zeolite particle. As a consequence, the insignificant photocurrent for the oxidation of DEPD was from the NaY|AcH+ electrode. However, if Fe2+ and Fe(phen)32+ were incorporated, the photocurrent would become more significant. Closer examinations, in addition, showed that the photooxidaton of DEPD occurred more rapidly on the NaY|AcH +|Fe(phen)32+ electrode, compared to the NaY|AcH+|Fe2+ electrode. This difference apparently results from a greater gap in energetics between DEPD and Fe(phen) 33+(NaY) than that between DEPD and Fe 3+(NaY). Due to this effect, a greater amount of indophenol blue, derived from the coupling reaction of the oxidized DEPD with 1-naphthol, was formed and deposited on the NaY|AcH+|Fe(phen) 32+ modified electrode. Thanks to this photo-induced charge-transfer reaction, the NaY|AcH+|Fe(phen)3 2+ particle showed an application potential in image recording.

AB - Chemically modified zeolite Y (NaY) particles and their resulting modified electrodes were prepared with acridinium (AcH+), iron(II) and 1,10-phenanthroline (phen) for energetic studies. According to diffuse reflectance absorption spectroscopy and cyclic voltammetry, AcH+ and Fe(phen)32+ were successfully entrapped in the zeolite particles. Transient emission spectra measurements showed that the lifetime of AcH+* in the zeolite particles (to 35 ns; λex 365 nm; λem 500 nm) was greatly reduced upon incorporating Fe(phen)32+ and Fe2+. The fast decay of AcH+*(NaY) suggested that a reductive quench was likely to take place in the zeolite particle. Probably due to a size-exclusion effect, the bulky electron donor, N,N-diethyl-2-methy 1-1,4-phenylene diamine (DEPD), revealed a difficulty in reaching the photosensitizer, AcH+, inside the zeolite particle. As a consequence, the insignificant photocurrent for the oxidation of DEPD was from the NaY|AcH+ electrode. However, if Fe2+ and Fe(phen)32+ were incorporated, the photocurrent would become more significant. Closer examinations, in addition, showed that the photooxidaton of DEPD occurred more rapidly on the NaY|AcH +|Fe(phen)32+ electrode, compared to the NaY|AcH+|Fe2+ electrode. This difference apparently results from a greater gap in energetics between DEPD and Fe(phen) 33+(NaY) than that between DEPD and Fe 3+(NaY). Due to this effect, a greater amount of indophenol blue, derived from the coupling reaction of the oxidized DEPD with 1-naphthol, was formed and deposited on the NaY|AcH+|Fe(phen) 32+ modified electrode. Thanks to this photo-induced charge-transfer reaction, the NaY|AcH+|Fe(phen)3 2+ particle showed an application potential in image recording.

KW - Acridinium

KW - Fe(II) 1,10-phenanthroline complex

KW - Photo-induced electron transfer

KW - Zeolite-modified electrode

UR - http://www.scopus.com/inward/record.url?scp=0013357974&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0013357974&partnerID=8YFLogxK

U2 - 10.1002/jccs.200200009

DO - 10.1002/jccs.200200009

M3 - Article

AN - SCOPUS:0013357974

VL - 49

SP - 51

EP - 56

JO - Journal of the Chinese Chemical Society

JF - Journal of the Chinese Chemical Society

SN - 0009-4536

IS - 1

ER -