Fabrication of SnS 2 /Mn 2 SnS 4 /Carbon Heterostructures for Sodium-Ion Batteries with High Initial Coulombic Efficiency and Cycling Stability

Xing Ou, Liang Cao, Xinghui Liang, Fenghua Zheng, Hong Sheng Zheng, Xianfeng Yang, Jeng Han Wang, Chenghao Yang*, Meilin Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

213 Citations (Scopus)

Abstract

SnS 2 has been extensive studied as an anode material for sodium storage owing to its high theoretical specific capacity, whereas the unsatisfied initial Coulombic efficiency (ICE) caused by the partial irreversible conversion reaction during the charge/discharge process is one of the critical issues that hamper its practical applications. Hence, heterostructured SnS 2 /Mn 2 SnS 4 /carbon nanoboxes (SMS/C NBs) have been developed by a facial wet-chemical method and utilized as the anode material of sodium ion batteries. SMS/C NBs can deliver an initial capacity of 841.2 mAh g -1 with high ICE of 90.8%, excellent rate capability (752.3, 604.7, 570.1, 546.9, 519.7, and 488.7 mAh g -1 at the current rate of 0.1, 0.5, 1.0, 2.0, 5.0, and 10.0 A g -1 , respectively), and long cycling stability (522.5 mAh g -1 at 5.0 A g -1 after 500 cycles). The existence of SnS 2 /Mn 2 SnS 4 heterojunctions can effectively stabilize the reaction products Sn and Na 2 S, greatly prevent the coarsening of nanosized Sn 0 , and enhance reversible conversion- A lloying reaction, which play a key role in improving the ICE and extending the cycling performance. Moreover, the heterostructured SMS coupled with the interacting carbon network provides efficient channels for electrons and Na + diffusion, resulting in an excellent rate performance.

Original languageEnglish
Pages (from-to)3666-3676
Number of pages11
JournalACS Nano
Volume13
Issue number3
DOIs
Publication statusPublished - 2019 Mar 26

Keywords

  • SnS
  • conversion reaction
  • in situ TEM
  • in situ XRD
  • initial Coulombic efficiency
  • sodium-ion batteries

ASJC Scopus subject areas

  • General Materials Science
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Fabrication of SnS 2 /Mn 2 SnS 4 /Carbon Heterostructures for Sodium-Ion Batteries with High Initial Coulombic Efficiency and Cycling Stability'. Together they form a unique fingerprint.

Cite this