Abstract
A molecular dynamics simulation of the folding of a short alanine-based helical peptide of 17 residues with three Glu⋯Lys (i, i + 4) salt bridge pairs, referred to as the AEK17 peptide, was carried out. The simulation gave an estimated simulation folding time of 2.5 ns, shorter than 12 ns for an alanine-based peptide of 16 residues with three Lys residues only, referred to as the AK16 peptide, simulated previously. After folded, the AEK17 peptide had a helical content of 77%, in excellent agreement with the experimentally determined value of 80%. An examination of the folding pathways of AEK17 indicated that the peptide proceeded via three-turn helix conformations more than the helix-turn-helix conformation in the folding pathways. An analysis of interactions indicated that the formation of hydrogen bonds between Lys residue side chains and backbone carbonyls is a major factor in the abundant conformation of the three-turn helix intermediate. The substitution of three Ala with Glu residues reduces the extent of hydrophobic interaction in alanine-based AK peptides with the result that the breaking of the interactions of Lys ε-NH3+(side chain)⋯C=O(backbone) is a major activation action for the AEK17 to achieve a complete fold, in contrast to the AK16 peptide, in which breaking non-native hydrophobic interaction is the rate-determining step.
Original language | English |
---|---|
Pages (from-to) | 3508-3514 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry B |
Volume | 111 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2007 Apr 5 |
ASJC Scopus subject areas
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry