Abstract
Two spin 1 2 paramagnetic species (species I and species II) are detected by electron paramagnetic resonance (EPR) in CrO2- 4-doped (NH4)3H(SeO4)2 single crystals, after the host crystals had been heated to temperatures well below their decomposition temperature. When heat treated at lower temperatures ({reversed tilde equals}90°C), only one species (species I) was detected by EPR. The EPR spectrum of this species was identical to that of the CrO3- 4 species produced by γ-irradiation of the sample crystals. By comparing the thermal treatment behaviors of the CrO2- 4-doped Rb3H(SeO4)2 and Cs3H(SeO4)2 crystals, it was established that the electronic defect acquired by the CrO2- 4 to form the thermally produced CrO3- 4 (I) originates from the NH+ 4 group. It is difficult to determine with certainty from the g-values alone the identity of species II. This species could be a CrO- 3 or a Cr5+ ion.
Original language | English |
---|---|
Pages (from-to) | 549-555 |
Number of pages | 7 |
Journal | Journal of Solid State Chemistry |
Volume | 93 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1991 Aug |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Condensed Matter Physics
- Physical and Theoretical Chemistry
- Inorganic Chemistry
- Materials Chemistry