Epitaxial electrodeposition of cobalt on a Pt(111) electrode covered with a Cu(111) film

Po Yu Yen, Sihzih Chen, Hsin Ling Tu, Hengliang Wu, Shueh Lin Yau*, Jyh Shen Tsay

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Electrodeposition is an inexpensive alternative to the conventional molecular beam epitaxy technique used to fabricate artificial magnetic materials, such as cobalt thin film. Reported here is a scanning tunneling microscopy (STM) study on the electrodeposition of Co on a Pt(111) single-crystal electrode precoated with a Cu thin film in 0.1 M KClO4 + 1 mM HCl + 0.04 M CoCl2 (pH 3). Deposition of Co started with the nucleation of nanometer-sized clusters preferentially at pits on the Cu support, followed by lateral expansion and coalescence of Co nuclei to form a uniform Co layer. Normally a few Co layers would grow simultaneously to produce a smooth Co deposit until the 12th layer. Cobalt grew in three dimensions afterward. Atomic-resolution STM imaging showed that the first Co layer assumed a double-lined pattern, which was lifted by the deposition of another layer of Co. The second Co layer exhibited a hollow-ring pattern, which transformed into a moiré pattern and triangular pits at the third Co layer. The moiré pattern gained prominence at the expense of the triangular pits as the Co deposit thickened. The amplitude of the intensity modulation of the moiré pattern decreased with the thickness of the Co deposit and eventually became indiscernible at the 12th layer. These restructuring events resulted from a gradual release of the stress at the Co/Cu interface. Since the morphology of the copper substrate was hardly changed by the deposition of cobalt, mixing at the Co/Cu interface seems to be negligible. Similar to the deposition process, dissolution of Co deposit proceeded in layers also.

Original languageEnglish
Pages (from-to)23802-23808
Number of pages7
JournalJournal of Physical Chemistry C
Volume115
Issue number48
DOIs
Publication statusPublished - 2011 Dec 8

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Epitaxial electrodeposition of cobalt on a Pt(111) electrode covered with a Cu(111) film'. Together they form a unique fingerprint.

Cite this