Environmental heterogeneity leads to spatial differences in genetic diversity and demographic structure of acer caudatifolium

Min Xin Luo, Hsin Pei Lu, Min Wei Chai, Jui Tse Chang, Pei Chun Liao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Under climate fluctuation, species dispersal may be disturbed by terrain and local climate, resulting in uneven spatial-genetic structure. In addition, organisms at different latitudes may be differentially susceptible to climate change. Here, we tracked the seed dispersal of Acer caudatifolium using chloroplast DNA to explore the relationships of terrain and local climate heterogeneity with range shifts and demography in Taiwan. Our results showed that the extant populations have shifted upward and northward to the mountains since the Last Glacial Maximum. The distributional upshift of A. caudatifolium is in contrast to the downward expansion of its closest relative in Taiwan, A. morrisonense. The northern populations of A. caudatifolium have acquired multiple-source chloro-types and harbor high genetic diversity. However, effective gene flow between the north and south is interrupted by topography, geographic distance, north-south differences in October rainfall, and other climate heterogeneities, blocking southward genetic rescue. In addition, winter monsoon-driven rainfall may cause regional differences in the phenological schedule, resulting in adaptive effects on the timing of range shift and the genetic draft of chlorotype distribution. Terrain, distance, and local climate also differentiate the northernmost populations from the others, supporting the previous taxonomic treatment of Acer kawakamii var. taitonmontanum as an independent variety.

Original languageEnglish
Article number1646
JournalPlants
Volume10
Issue number8
DOIs
Publication statusPublished - 2021 Aug

Keywords

  • Ecological niche modeling
  • Genetic draft
  • Historical demography
  • Paleodistribution
  • Spatial-genetic structure
  • Upslope shift

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Ecology
  • Plant Science

Fingerprint

Dive into the research topics of 'Environmental heterogeneity leads to spatial differences in genetic diversity and demographic structure of acer caudatifolium'. Together they form a unique fingerprint.

Cite this