TY - GEN
T1 - End-to-End Mispronunciation Detection and Diagnosis From Raw Waveforms
AU - Yan, Bi Cheng
AU - Chen, Berlin
N1 - Publisher Copyright:
© 2021 European Signal Processing Conference. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Mispronunciation detection and diagnosis (MDD) is designed to identify pronunciation errors and provide instructive feedback to guide non-native language learners, which is a core component in computer-assisted pronunciation training (CAPT) systems. However, MDD often suffers from the data-sparsity problem due to that collecting non-native data and the associated annotations is time-consuming and labor-intensive. To address this issue, we explore a fully end-to-end (E2E) neural model for MDD, which processes learners' speech directly based on raw waveforms. Compared to conventional hand-crafted acoustic features, raw waveforms retain more acoustic phenomena and potentially can help neural networks discover better and more customized representations. To this end, our MDD model adopts a co-called SincNet module to take input a raw waveform and covert it to a suitable vector representation sequence. SincNet employs the cardinal sine (sinc) function to implement learnable bandpass filters, drawing inspiration from the convolutional neural network (CNN). By comparison to CNN, SincNet has fewer parameters and is more amenable to human interpretation. Extensive experiments are conducted on the L2-ARCTIC dataset, which is a publicly-available non-native English speech corpus compiled for research on CAPT. We find that the sinc filters of SincNet can be adapted quickly for non-native language learners of different nationalities. Furthermore, our model can achieve comparable mispronunciation detection performance in relation to state-of-the-art E2E MDD models that take input the standard handcrafted acoustic features. Besides that, our model also provides considerable improvements on phone error rate (PER) and diagnosis accuracy.
AB - Mispronunciation detection and diagnosis (MDD) is designed to identify pronunciation errors and provide instructive feedback to guide non-native language learners, which is a core component in computer-assisted pronunciation training (CAPT) systems. However, MDD often suffers from the data-sparsity problem due to that collecting non-native data and the associated annotations is time-consuming and labor-intensive. To address this issue, we explore a fully end-to-end (E2E) neural model for MDD, which processes learners' speech directly based on raw waveforms. Compared to conventional hand-crafted acoustic features, raw waveforms retain more acoustic phenomena and potentially can help neural networks discover better and more customized representations. To this end, our MDD model adopts a co-called SincNet module to take input a raw waveform and covert it to a suitable vector representation sequence. SincNet employs the cardinal sine (sinc) function to implement learnable bandpass filters, drawing inspiration from the convolutional neural network (CNN). By comparison to CNN, SincNet has fewer parameters and is more amenable to human interpretation. Extensive experiments are conducted on the L2-ARCTIC dataset, which is a publicly-available non-native English speech corpus compiled for research on CAPT. We find that the sinc filters of SincNet can be adapted quickly for non-native language learners of different nationalities. Furthermore, our model can achieve comparable mispronunciation detection performance in relation to state-of-the-art E2E MDD models that take input the standard handcrafted acoustic features. Besides that, our model also provides considerable improvements on phone error rate (PER) and diagnosis accuracy.
KW - Computer assisted pronunciation training (CAPT)
KW - Mispronunciation detection and diagnosis (MDD)
KW - Raw waveforms
KW - Sincnet
UR - http://www.scopus.com/inward/record.url?scp=85123193276&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123193276&partnerID=8YFLogxK
U2 - 10.23919/EUSIPCO54536.2021.9615987
DO - 10.23919/EUSIPCO54536.2021.9615987
M3 - Conference contribution
AN - SCOPUS:85123193276
T3 - European Signal Processing Conference
SP - 61
EP - 65
BT - 29th European Signal Processing Conference, EUSIPCO 2021 - Proceedings
PB - European Signal Processing Conference, EUSIPCO
T2 - 29th European Signal Processing Conference, EUSIPCO 2021
Y2 - 23 August 2021 through 27 August 2021
ER -