Elimination of artifacts in encrypted binary images by modified digital halftoning techniques

Hsi-Chun Wang, Juo Han Sung, Yung Hui Chen

Research output: Contribution to journalConference article

4 Citations (Scopus)

Abstract

An anti-counterfeiting feature, latent image, has been widely applied for banknotes and security documents. The hidden pattern of denomination by intaglio printing process can be observed by viewing the bill at certain angles of elevation. While designing the latent image, a continuous-tone cover image and a binary figurative pattern are used. The continuous tone image is halftoned by horizontal and vertical line screen, respectively. The binary figurative pattern then serves as a mask to render the corresponding area of horizontal and vertical line screen on the figurative region and background region, respectively. These procedures can be done by many available commercial softwares. However, there are various artifacts such as gaps in the junctions of horizontal and vertical screen lines, discontinuous screen lines and the white or black artifacts on the edges of the latent image. The retouching of the resulting latent image needs to be carefully and skillfully handled. In this research, we developed an automatic process to generate the artifact-free latent image inside a cover image by modified digital halftoning techniques. The methods we applied include: (1) To design new 8x8 threshold matrices in order to make a perfect joint of the horizontal and vertical screen lines. (2) To use the linear scaling adjustment to enhance the cover image not resulting discontinuous line. (3) To register the 8x8-based figurative pattern to the 8x8 threshold matrix and to avoid the visual artifacts. For latent image detection, a frequency domain treatment by FFT (Fast Fourier Transformation) and inverse-FFT is used to extract the encrypted image. This is especially useful for machine-readable applications. The results show that the developed process in this research does has the ability to automatically generate the desired latent image without any artifact. It also saves the costly retouching in the existing process. A frequency domain detection method is applied to extract latent images. The proposed techniques in this research also have great potential to proceed security printing in a digital way.

Original languageEnglish
Pages (from-to)404-415
Number of pages12
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5310
DOIs
Publication statusPublished - 2004 Dec 1
EventOptical Security and Counterfeit Deterrence Techniques V - San Jose, CA, United States
Duration: 2004 Jan 202004 Jan 22

Fingerprint

Digital Halftoning
digital techniques
Binary images
Binary Image
Elimination
artifacts
elimination
Printing
Masks
Line
Horizontal
Vertical
Fourier Transformation
fast Fourier transformations
Cover
printing
Frequency Domain
Angle of elevation
Binary
thresholds

Keywords

  • Amplitude modulation
  • Anti-counterfeiting
  • Digital image processing
  • Signal processing
  • Watermarking

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Elimination of artifacts in encrypted binary images by modified digital halftoning techniques. / Wang, Hsi-Chun; Sung, Juo Han; Chen, Yung Hui.

In: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5310, 01.12.2004, p. 404-415.

Research output: Contribution to journalConference article

@article{d37f0ef3daf84c8385dd04d87b4b3716,
title = "Elimination of artifacts in encrypted binary images by modified digital halftoning techniques",
abstract = "An anti-counterfeiting feature, latent image, has been widely applied for banknotes and security documents. The hidden pattern of denomination by intaglio printing process can be observed by viewing the bill at certain angles of elevation. While designing the latent image, a continuous-tone cover image and a binary figurative pattern are used. The continuous tone image is halftoned by horizontal and vertical line screen, respectively. The binary figurative pattern then serves as a mask to render the corresponding area of horizontal and vertical line screen on the figurative region and background region, respectively. These procedures can be done by many available commercial softwares. However, there are various artifacts such as gaps in the junctions of horizontal and vertical screen lines, discontinuous screen lines and the white or black artifacts on the edges of the latent image. The retouching of the resulting latent image needs to be carefully and skillfully handled. In this research, we developed an automatic process to generate the artifact-free latent image inside a cover image by modified digital halftoning techniques. The methods we applied include: (1) To design new 8x8 threshold matrices in order to make a perfect joint of the horizontal and vertical screen lines. (2) To use the linear scaling adjustment to enhance the cover image not resulting discontinuous line. (3) To register the 8x8-based figurative pattern to the 8x8 threshold matrix and to avoid the visual artifacts. For latent image detection, a frequency domain treatment by FFT (Fast Fourier Transformation) and inverse-FFT is used to extract the encrypted image. This is especially useful for machine-readable applications. The results show that the developed process in this research does has the ability to automatically generate the desired latent image without any artifact. It also saves the costly retouching in the existing process. A frequency domain detection method is applied to extract latent images. The proposed techniques in this research also have great potential to proceed security printing in a digital way.",
keywords = "Amplitude modulation, Anti-counterfeiting, Digital image processing, Signal processing, Watermarking",
author = "Hsi-Chun Wang and Sung, {Juo Han} and Chen, {Yung Hui}",
year = "2004",
month = "12",
day = "1",
doi = "10.1117/12.526738",
language = "English",
volume = "5310",
pages = "404--415",
journal = "Proceedings of SPIE - The International Society for Optical Engineering",
issn = "0277-786X",
publisher = "SPIE",

}

TY - JOUR

T1 - Elimination of artifacts in encrypted binary images by modified digital halftoning techniques

AU - Wang, Hsi-Chun

AU - Sung, Juo Han

AU - Chen, Yung Hui

PY - 2004/12/1

Y1 - 2004/12/1

N2 - An anti-counterfeiting feature, latent image, has been widely applied for banknotes and security documents. The hidden pattern of denomination by intaglio printing process can be observed by viewing the bill at certain angles of elevation. While designing the latent image, a continuous-tone cover image and a binary figurative pattern are used. The continuous tone image is halftoned by horizontal and vertical line screen, respectively. The binary figurative pattern then serves as a mask to render the corresponding area of horizontal and vertical line screen on the figurative region and background region, respectively. These procedures can be done by many available commercial softwares. However, there are various artifacts such as gaps in the junctions of horizontal and vertical screen lines, discontinuous screen lines and the white or black artifacts on the edges of the latent image. The retouching of the resulting latent image needs to be carefully and skillfully handled. In this research, we developed an automatic process to generate the artifact-free latent image inside a cover image by modified digital halftoning techniques. The methods we applied include: (1) To design new 8x8 threshold matrices in order to make a perfect joint of the horizontal and vertical screen lines. (2) To use the linear scaling adjustment to enhance the cover image not resulting discontinuous line. (3) To register the 8x8-based figurative pattern to the 8x8 threshold matrix and to avoid the visual artifacts. For latent image detection, a frequency domain treatment by FFT (Fast Fourier Transformation) and inverse-FFT is used to extract the encrypted image. This is especially useful for machine-readable applications. The results show that the developed process in this research does has the ability to automatically generate the desired latent image without any artifact. It also saves the costly retouching in the existing process. A frequency domain detection method is applied to extract latent images. The proposed techniques in this research also have great potential to proceed security printing in a digital way.

AB - An anti-counterfeiting feature, latent image, has been widely applied for banknotes and security documents. The hidden pattern of denomination by intaglio printing process can be observed by viewing the bill at certain angles of elevation. While designing the latent image, a continuous-tone cover image and a binary figurative pattern are used. The continuous tone image is halftoned by horizontal and vertical line screen, respectively. The binary figurative pattern then serves as a mask to render the corresponding area of horizontal and vertical line screen on the figurative region and background region, respectively. These procedures can be done by many available commercial softwares. However, there are various artifacts such as gaps in the junctions of horizontal and vertical screen lines, discontinuous screen lines and the white or black artifacts on the edges of the latent image. The retouching of the resulting latent image needs to be carefully and skillfully handled. In this research, we developed an automatic process to generate the artifact-free latent image inside a cover image by modified digital halftoning techniques. The methods we applied include: (1) To design new 8x8 threshold matrices in order to make a perfect joint of the horizontal and vertical screen lines. (2) To use the linear scaling adjustment to enhance the cover image not resulting discontinuous line. (3) To register the 8x8-based figurative pattern to the 8x8 threshold matrix and to avoid the visual artifacts. For latent image detection, a frequency domain treatment by FFT (Fast Fourier Transformation) and inverse-FFT is used to extract the encrypted image. This is especially useful for machine-readable applications. The results show that the developed process in this research does has the ability to automatically generate the desired latent image without any artifact. It also saves the costly retouching in the existing process. A frequency domain detection method is applied to extract latent images. The proposed techniques in this research also have great potential to proceed security printing in a digital way.

KW - Amplitude modulation

KW - Anti-counterfeiting

KW - Digital image processing

KW - Signal processing

KW - Watermarking

UR - http://www.scopus.com/inward/record.url?scp=8844261040&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=8844261040&partnerID=8YFLogxK

U2 - 10.1117/12.526738

DO - 10.1117/12.526738

M3 - Conference article

AN - SCOPUS:8844261040

VL - 5310

SP - 404

EP - 415

JO - Proceedings of SPIE - The International Society for Optical Engineering

JF - Proceedings of SPIE - The International Society for Optical Engineering

SN - 0277-786X

ER -